Tymec's picture
Import spacy model as module
7b9e59d
raw
history blame
5.24 kB
from __future__ import annotations
import warnings
import en_core_web_sm
import numpy as np
from joblib import Memory
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV, cross_val_score, train_test_split
from sklearn.pipeline import Pipeline
from tqdm import tqdm
from app.constants import CACHE_DIR
__all__ = ["create_model", "train_model", "evaluate_model"]
nlp = en_core_web_sm.load(disable=["tok2vec", "parser", "ner"])
class TextTokenizer(BaseEstimator, TransformerMixin):
def __init__(
self,
*,
character_threshold: int = 2,
batch_size: int = 1024,
n_jobs: int = 8,
progress: bool = True,
) -> None:
self.character_threshold = character_threshold
self.batch_size = batch_size
self.n_jobs = n_jobs
self.progress = progress
def fit(self, _data: list[str], _labels: list[int] | None = None) -> TextTokenizer:
return self
def transform(self, data: list[str]) -> list[list[str]]:
tokenized = []
for doc in tqdm(
nlp.pipe(data, batch_size=self.batch_size, n_process=self.n_jobs),
total=len(data),
disable=not self.progress,
):
tokens = []
for token in doc:
# Ignore stop words and punctuation
if token.is_stop or token.is_punct:
continue
# Ignore emails, URLs and numbers
if token.like_email or token.like_email or token.like_num:
continue
# Lemmatize and lowercase
tok = token.lemma_.lower().strip()
# Format hashtags
if tok.startswith("#"):
tok = tok[1:]
# Ignore short and non-alphanumeric tokens
if len(tok) < self.character_threshold or not tok.isalnum():
continue
# TODO: Emoticons and emojis
# TODO: Spelling correction
tokens.append(tok)
tokenized.append(tokens)
return tokenized
def identity(x: list[str]) -> list[str]:
"""Identity function for use in TfidfVectorizer.
Args:
x: Input data
Returns:
Unchanged input data
"""
return x
def create_model(
max_features: int,
seed: int | None = None,
verbose: bool = False,
) -> Pipeline:
"""Create a sentiment analysis model.
Args:
max_features: Maximum number of features
seed: Random seed (None for random seed)
verbose: Whether to log progress during training
Returns:
Untrained model
"""
return Pipeline(
[
("tokenizer", TextTokenizer(progress=True)),
(
"vectorizer",
TfidfVectorizer(
max_features=max_features,
ngram_range=(1, 2),
# disable text processing
tokenizer=identity,
preprocessor=identity,
lowercase=False,
token_pattern=None,
),
),
("classifier", LogisticRegression(max_iter=1000, C=1.0, random_state=seed)),
],
memory=Memory(CACHE_DIR, verbose=0),
verbose=verbose,
)
def train_model(
model: BaseEstimator,
text_data: list[str],
label_data: list[int],
seed: int = 42,
) -> tuple[BaseEstimator, float]:
"""Train the sentiment analysis model.
Args:
model: Untrained model
text_data: Text data
label_data: Label data
seed: Random seed (None for random seed)
Returns:
Trained model and accuracy
"""
text_train, text_test, label_train, label_test = train_test_split(
text_data,
label_data,
test_size=0.2,
random_state=seed,
)
param_distributions = {
"classifier__C": np.logspace(-4, 4, 20),
"classifier__penalty": ["l1", "l2"],
}
search = RandomizedSearchCV(
model,
param_distributions,
n_iter=10,
cv=5,
scoring="accuracy",
random_state=seed,
n_jobs=-1,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# model.fit(text_train, label_train)
search.fit(text_train, label_train)
best_model = search.best_estimator_
return best_model, best_model.score(text_test, label_test)
def evaluate_model(
model: Pipeline,
text_data: list[str],
label_data: list[int],
folds: int = 5,
) -> tuple[float, float]:
"""Evaluate the model using cross-validation.
Args:
model: Trained model
text_data: Text data
label_data: Label data
folds: Number of cross-validation folds
Returns:
Mean accuracy and standard deviation
"""
scores = cross_val_score(
model,
text_data,
label_data,
cv=folds,
scoring="accuracy",
)
return scores.mean(), scores.std()