gence2api / appigence_api.py
Tyb7654's picture
Upload 2 files
4295924 verified
# appigence_api.py
import json
import os
import time
import uuid
import asyncio
from typing import Any, Dict, List, Optional, AsyncGenerator
from contextlib import asynccontextmanager
import httpx
from fastapi import FastAPI, HTTPException, Depends, BackgroundTasks
from fastapi.responses import StreamingResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import uvicorn
# ========== 数据模型 - 遵循DRY原则 ==========
class ChatMessage(BaseModel):
"""OpenAI格式的消息"""
role: str
content: str
class ChatCompletionRequest(BaseModel):
"""OpenAI格式的聊天请求"""
model: str
messages: List[ChatMessage]
stream: bool = False
temperature: Optional[float] = 0.7
max_tokens: Optional[int] = None
class StreamChoice(BaseModel):
"""流式响应选项"""
delta: Dict[str, Any] = Field(default_factory=dict)
index: int = 0
finish_reason: Optional[str] = None
class StreamResponse(BaseModel):
"""OpenAI格式的流式响应"""
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4().hex}")
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[StreamChoice]
class ModelInfo(BaseModel):
"""模型信息"""
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "appigence"
class HealthCheck(BaseModel):
"""健康检查响应"""
status: str
timestamp: int
version: str = "1.0.0"
models_available: List[str]
# ========== 全局HTTP客户端管理 - 遵循KISS原则 ==========
class HTTPClientManager:
"""HTTP客户端管理器 - 单例模式,遵循DRY原则"""
def __init__(self):
self.client: Optional[httpx.AsyncClient] = None
self.semaphore = asyncio.Semaphore(50) # 限制并发请求数
async def get_client(self) -> httpx.AsyncClient:
"""获取HTTP客户端实例"""
if self.client is None:
self.client = httpx.AsyncClient(
timeout=httpx.Timeout(300.0),
limits=httpx.Limits(
max_keepalive_connections=20,
max_connections=100
)
)
return self.client
async def close(self):
"""关闭HTTP客户端"""
if self.client:
await self.client.aclose()
self.client = None
# 全局客户端管理器实例
http_manager = HTTPClientManager()
# ========== Appigence处理器 - 遵循单一职责原则 ==========
class AppigenceHandler:
"""
Appigence API处理器
专注于Appigence API的所有交互逻辑
"""
def __init__(self):
self.model_mapping = {
"gpt-4": "gpt-4o",
"gpt-4-turbo": "gpt-4o",
"gpt-3.5-turbo": "gpt-4o-mini",
}
self.supported_models = [
"gpt-4o", "gpt-4o-mini", "gpt-3.5-turbo",
"gpt-4", "gpt-4-turbo"
]
self.api_url = "https://api.appigence.com/chat"
self.headers = {
"Host": "api.appigence.com",
"Content-Type": "application/json",
"Connection": "keep-alive",
"Accept": "*/*",
"User-Agent": "ChatWise/1.2.16 CFNetwork/1410.0.3 Darwin/22.6.0",
"Accept-Language": "zh-CN,zh-Hans;q=0.9",
"Accept-Encoding": "gzip, deflate, br"
}
def get_supported_models(self) -> List[str]:
"""获取支持的模型列表"""
return self.supported_models
def get_model_info(self, model_id: str) -> ModelInfo:
"""获取模型信息"""
return ModelInfo(id=model_id, owned_by="appigence")
def _convert_request(self, request: ChatCompletionRequest) -> Dict[str, Any]:
"""将OpenAI格式转换为Appigence格式 - 遵循DRY原则"""
conversation = []
for msg in request.messages:
role = "user" if msg.role == "system" else msg.role
conversation.append({
"content": msg.content,
"role": role
})
model_name = self.model_mapping.get(request.model, request.model)
return {
"isPremium": True,
"modelName": model_name,
"userConversation": conversation
}
def _parse_sse_line(self, line: str) -> Optional[Dict[str, Any]]:
"""解析SSE数据行"""
if not line:
return None
try:
return json.loads(line)
except json.JSONDecodeError:
return None
def _extract_content_delta(self, data: Dict[str, Any]) -> Optional[str]:
"""提取内容增量"""
try:
choices = data.get("choices", [])
if choices and len(choices) > 0:
delta = choices[0].get("delta", {})
return delta.get("content", "")
except (KeyError, IndexError, TypeError):
return None
def _is_finished(self, data: Dict[str, Any]) -> bool:
"""检查流是否结束"""
try:
choices = data.get("choices", [])
if choices and len(choices) > 0:
return choices[0].get("finish_reason") == "stop"
except (KeyError, IndexError, TypeError):
return False
return False
async def handle_stream_request(
self,
request: ChatCompletionRequest
) -> AsyncGenerator[str, None]:
"""处理流式请求 - 支持高并发"""
appigence_request = self._convert_request(request)
stream_id = f"chatcmpl-{uuid.uuid4().hex}"
created_time = int(time.time())
# 发送角色信息
yield f"data: {json.dumps({'id': stream_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': request.model, 'choices': [{'index': 0, 'delta': {'role': 'assistant'}, 'finish_reason': None}]})}\n\n"
async with http_manager.semaphore: # 限制并发
try:
client = await http_manager.get_client()
async with client.stream(
"POST",
self.api_url,
json=appigence_request,
headers=self.headers
) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line:
continue
data = self._parse_sse_line(line)
if not data:
continue
content_delta = self._extract_content_delta(data)
if content_delta:
delta_response = StreamResponse(
id=stream_id,
created=created_time,
model=request.model,
choices=[StreamChoice(delta={"content": content_delta})]
)
yield f"data: {delta_response.json()}\n\n"
if self._is_finished(data):
break
# 发送结束标记
finish_response = StreamResponse(
id=stream_id,
created=created_time,
model=request.model,
choices=[StreamChoice(delta={}, finish_reason="stop")]
)
yield f"data: {finish_response.json()}\n\n"
yield "data: [DONE]\n\n"
except httpx.HTTPStatusError as e:
error_msg = f"Appigence API error: {e.response.status_code}"
yield f"data: {json.dumps({'error': error_msg})}\n\n"
except Exception as e:
error_msg = f"Internal error: {str(e)}"
yield f"data: {json.dumps({'error': error_msg})}\n\n"
async def handle_non_stream_request(
self,
request: ChatCompletionRequest
) -> Dict[str, Any]:
"""处理非流式请求"""
appigence_request = self._convert_request(request)
content_pieces = []
async with http_manager.semaphore: # 限制并发
client = await http_manager.get_client()
async with client.stream(
"POST",
self.api_url,
json=appigence_request,
headers=self.headers
) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line:
continue
data = self._parse_sse_line(line)
if not data:
continue
content_delta = self._extract_content_delta(data)
if content_delta:
content_pieces.append(content_delta)
if self._is_finished(data):
break
content = "".join(content_pieces)
return {
"id": f"chatcmpl-{uuid.uuid4().hex}",
"object": "chat.completion",
"created": int(time.time()),
"model": request.model,
"choices": [{
"message": {"role": "assistant", "content": content},
"index": 0,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
# ========== 应用生命周期管理 ==========
@asynccontextmanager
async def lifespan(app: FastAPI):
"""应用生命周期管理 - 遵循YAGNI原则"""
# 启动时初始化
yield
# 关闭时清理资源
await http_manager.close()
# ========== FastAPI应用初始化 ==========
app = FastAPI(
title="Appigence OpenAI API Adapter",
description="高性能Appigence API适配器,支持OpenAI格式调用",
version="1.0.0",
lifespan=lifespan
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 初始化处理器
handler = AppigenceHandler()
# 可选的API密钥验证
security = HTTPBearer(auto_error=False)
async def get_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)):
"""API密钥验证 - 可选功能"""
# 如果设置了API_KEY环境变量,则进行验证
required_key = os.getenv("API_KEY")
if required_key:
if not credentials or credentials.credentials != required_key:
raise HTTPException(status_code=401, detail="Invalid API key")
return credentials
# ========== API端点定义 ==========
@app.get("/", response_model=Dict[str, str])
async def root():
"""根端点 - 遵循KISS原则"""
return {
"message": "Appigence OpenAI API Adapter",
"version": "1.0.0",
"docs": "/docs"
}
@app.get("/health", response_model=HealthCheck)
async def health_check():
"""健康检查端点"""
return HealthCheck(
status="healthy",
timestamp=int(time.time()),
models_available=handler.get_supported_models()
)
@app.get("/v1/models")
async def list_models(api_key: Optional[HTTPAuthorizationCredentials] = Depends(get_api_key)):
"""列出所有可用模型"""
models = [
handler.get_model_info(model_id).dict()
for model_id in handler.get_supported_models()
]
return {"object": "list", "data": models}
@app.post("/v1/chat/completions")
async def chat_completions(
request: ChatCompletionRequest,
background_tasks: BackgroundTasks,
api_key: Optional[HTTPAuthorizationCredentials] = Depends(get_api_key)
):
"""
处理聊天完成请求 - 统一入口点
支持流式和非流式响应
"""
if not request.messages:
raise HTTPException(status_code=400, detail="Messages required")
# 验证模型
if request.model not in handler.get_supported_models():
raise HTTPException(
status_code=400,
detail=f"Unsupported model: {request.model}. Supported models: {handler.get_supported_models()}"
)
try:
if request.stream:
# 返回流式响应
return StreamingResponse(
handler.handle_stream_request(request),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no" # 禁用nginx缓冲
}
)
else:
# 返回非流式响应
response = await handler.handle_non_stream_request(request)
return response
except httpx.HTTPStatusError as e:
raise HTTPException(
status_code=e.response.status_code,
detail=f"Backend API error: {e.response.text}"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
# ========== 应用启动配置 ==========
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860)) # Hugging Face Spaces默认端口
print(f"🚀 Starting Appigence API Adapter on port {port}")
print(f"📚 API Documentation: http://localhost:{port}/docs")
print(f"❤️ Health Check: http://localhost:{port}/health")
uvicorn.run(
"appigence_api:app",
host="0.0.0.0",
port=port,
workers=1, # 在容器中使用单worker,通过Gunicorn管理多进程
log_level="info",
access_log=True
)