TwentyNine's picture
Update app.py
d7c2f21 verified
raw
history blame
2.14 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("TwentyNine/byt5-small-ainu-latinizer-cos_w_restarts")
model1 = AutoModelForSeq2SeqLM.from_pretrained("TwentyNine/byt5-small-ainu-latinizer-cos_w_restarts")
model2 = AutoModelForSeq2SeqLM.from_pretrained("TwentyNine/byt5-small-ainu-latinizer-polynomial")
model3 = AutoModelForSeq2SeqLM.from_pretrained("TwentyNine/byt5-small-ainu-latinizer-linear")
def transcribe(input_str, model_index):
output_str = ''
model = None
match model_index:
case 1:
model = model1
case 2:
model = model2
case 3:
model = model3
case _:
model = model1
for input in input_str.split('\n'):
input_enc = tokenizer.encode(input.strip(), return_tensors='pt')
output_enc = model.generate(input_enc, max_length=256)
if len(output_str) > 0:
output_str = output_str + '\n'
output_str = output_str + tokenizer.decode(output_enc[0], skip_special_tokens=True)
return output_str
gradio_app = gr.Interface(
transcribe,
inputs=[gr.Textbox(label='Input (kana)', value='トゥイマ ヒ ワ エエㇰ ワ ヒオーイオイ。ピㇼカノ ヌカㇻ ヤン!', placeholder='トゥイマ ヒ ワ エエㇰ ワ ヒオーイオイ。ピㇼカノ ヌカㇻ ヤン!', info='Ainu text written in Japanese katakana (input).', interactive=True, autofocus=True)), gr.radio(label="Training scheduler type", choices=[("Cosine with Restarts", 1), ("Polynomial", 2), ("Linear", 3)]],
outputs=gr.Textbox(label='Output (alphabet)', info='Ainu text written in the Latin alphabet (output).'),
title='BYT5 Ainu Kana-Latin Converter (V1)',
article='<p>Example sentence borrowed from <a href="https://www.hakusuisha.co.jp/book/b584600.html">New Express Ainu-go</a> by <a href="https://researchmap.jp/read0064265/?lang=english">Professor NAKAGAWA Hiroshi</a> of Chiba University.</p>'
)
if __name__ == '__main__':
gradio_app.launch()