Migrate from yapf to black
Browse files- .pre-commit-config.yaml +54 -35
- .style.yapf +0 -5
- .vscode/settings.json +21 -0
- app.py +76 -97
- inference.py +12 -17
.pre-commit-config.yaml
CHANGED
@@ -1,37 +1,56 @@
|
|
1 |
exclude: patch
|
2 |
repos:
|
3 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
exclude: patch
|
2 |
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.4.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: end-of-file-fixer
|
13 |
+
- id: mixed-line-ending
|
14 |
+
args: ["--fix=lf"]
|
15 |
+
- id: requirements-txt-fixer
|
16 |
+
- id: trailing-whitespace
|
17 |
+
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.7.5
|
19 |
+
hooks:
|
20 |
+
- id: docformatter
|
21 |
+
args: ["--in-place"]
|
22 |
+
- repo: https://github.com/pycqa/isort
|
23 |
+
rev: 5.12.0
|
24 |
+
hooks:
|
25 |
+
- id: isort
|
26 |
+
args: ["--profile", "black"]
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.5.1
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ["--ignore-missing-imports"]
|
32 |
+
additional_dependencies:
|
33 |
+
["types-python-slugify", "types-requests", "types-PyYAML"]
|
34 |
+
- repo: https://github.com/psf/black
|
35 |
+
rev: 23.9.1
|
36 |
+
hooks:
|
37 |
+
- id: black
|
38 |
+
language_version: python3.10
|
39 |
+
args: ["--line-length", "119"]
|
40 |
+
- repo: https://github.com/kynan/nbstripout
|
41 |
+
rev: 0.6.1
|
42 |
+
hooks:
|
43 |
+
- id: nbstripout
|
44 |
+
args:
|
45 |
+
[
|
46 |
+
"--extra-keys",
|
47 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
48 |
+
]
|
49 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
50 |
+
rev: 1.7.0
|
51 |
+
hooks:
|
52 |
+
- id: nbqa-black
|
53 |
+
- id: nbqa-pyupgrade
|
54 |
+
args: ["--py37-plus"]
|
55 |
+
- id: nbqa-isort
|
56 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
+
"editor.formatOnType": true,
|
5 |
+
"editor.codeActionsOnSave": {
|
6 |
+
"source.organizeImports": true
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"black-formatter.args": [
|
10 |
+
"--line-length=119"
|
11 |
+
],
|
12 |
+
"isort.args": ["--profile", "black"],
|
13 |
+
"flake8.args": [
|
14 |
+
"--max-line-length=119"
|
15 |
+
],
|
16 |
+
"ruff.args": [
|
17 |
+
"--line-length=119"
|
18 |
+
],
|
19 |
+
"editor.formatOnSave": true,
|
20 |
+
"files.insertFinalNewline": true
|
21 |
+
}
|
app.py
CHANGED
@@ -18,89 +18,64 @@ class InferenceUtil:
|
|
18 |
try:
|
19 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
20 |
except Exception:
|
21 |
-
return
|
22 |
-
base_model = getattr(card.data,
|
23 |
-
training_prompt = getattr(card.data,
|
24 |
return base_model, training_prompt
|
25 |
|
26 |
|
27 |
-
DESCRIPTION =
|
28 |
if not torch.cuda.is_available():
|
29 |
-
DESCRIPTION +=
|
30 |
|
31 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv(
|
32 |
-
'CACHE_EXAMPLES') == '1'
|
33 |
|
34 |
-
HF_TOKEN = os.getenv(
|
35 |
pipe = InferencePipeline(HF_TOKEN)
|
36 |
app = InferenceUtil(HF_TOKEN)
|
37 |
|
38 |
-
with gr.Blocks(css=
|
39 |
gr.Markdown(DESCRIPTION)
|
40 |
|
41 |
with gr.Row():
|
42 |
with gr.Column():
|
43 |
with gr.Box():
|
44 |
model_id = gr.Dropdown(
|
45 |
-
label=
|
46 |
choices=[
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
],
|
51 |
-
value=
|
52 |
-
|
53 |
-
|
54 |
-
'Model info (Base model and prompt used for training)',
|
55 |
-
open=False):
|
56 |
with gr.Row():
|
57 |
-
base_model_used_for_training = gr.Text(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
maximum=12,
|
72 |
-
step=1,
|
73 |
-
value=1)
|
74 |
-
seed = gr.Slider(label='Seed',
|
75 |
-
minimum=0,
|
76 |
-
maximum=100000,
|
77 |
-
step=1,
|
78 |
-
value=0)
|
79 |
-
with gr.Accordion('Other Parameters', open=False):
|
80 |
-
num_steps = gr.Slider(label='Number of Steps',
|
81 |
-
minimum=0,
|
82 |
-
maximum=100,
|
83 |
-
step=1,
|
84 |
-
value=50)
|
85 |
-
guidance_scale = gr.Slider(label='CFG Scale',
|
86 |
-
minimum=0,
|
87 |
-
maximum=50,
|
88 |
-
step=0.1,
|
89 |
-
value=7.5)
|
90 |
-
|
91 |
-
run_button = gr.Button('Generate')
|
92 |
-
|
93 |
-
gr.Markdown('''
|
94 |
- It takes a few minutes to download model first.
|
95 |
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
96 |
-
|
|
|
97 |
with gr.Column():
|
98 |
-
result = gr.Video(label=
|
99 |
with gr.Row():
|
100 |
examples = [
|
101 |
[
|
102 |
-
|
103 |
-
|
104 |
8,
|
105 |
1,
|
106 |
3,
|
@@ -108,8 +83,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
108 |
7.5,
|
109 |
],
|
110 |
[
|
111 |
-
|
112 |
-
|
113 |
8,
|
114 |
1,
|
115 |
3,
|
@@ -117,8 +92,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
117 |
7.5,
|
118 |
],
|
119 |
[
|
120 |
-
|
121 |
-
|
122 |
8,
|
123 |
1,
|
124 |
123,
|
@@ -126,8 +101,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
126 |
7.5,
|
127 |
],
|
128 |
[
|
129 |
-
|
130 |
-
|
131 |
8,
|
132 |
1,
|
133 |
123,
|
@@ -135,8 +110,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
135 |
7.5,
|
136 |
],
|
137 |
[
|
138 |
-
|
139 |
-
|
140 |
8,
|
141 |
1,
|
142 |
123,
|
@@ -144,8 +119,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
144 |
7.5,
|
145 |
],
|
146 |
[
|
147 |
-
|
148 |
-
|
149 |
8,
|
150 |
1,
|
151 |
123,
|
@@ -153,8 +128,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
153 |
7.5,
|
154 |
],
|
155 |
[
|
156 |
-
|
157 |
-
|
158 |
8,
|
159 |
1,
|
160 |
123,
|
@@ -162,8 +137,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
162 |
7.5,
|
163 |
],
|
164 |
[
|
165 |
-
|
166 |
-
|
167 |
8,
|
168 |
1,
|
169 |
123,
|
@@ -171,8 +146,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
171 |
7.5,
|
172 |
],
|
173 |
[
|
174 |
-
|
175 |
-
|
176 |
8,
|
177 |
1,
|
178 |
123,
|
@@ -180,8 +155,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
180 |
7.5,
|
181 |
],
|
182 |
[
|
183 |
-
|
184 |
-
|
185 |
8,
|
186 |
1,
|
187 |
123,
|
@@ -189,26 +164,30 @@ with gr.Blocks(css='style.css') as demo:
|
|
189 |
7.5,
|
190 |
],
|
191 |
]
|
192 |
-
gr.Examples(
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
212 |
inputs = [
|
213 |
model_id,
|
214 |
prompt,
|
|
|
18 |
try:
|
19 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
20 |
except Exception:
|
21 |
+
return "", ""
|
22 |
+
base_model = getattr(card.data, "base_model", "")
|
23 |
+
training_prompt = getattr(card.data, "training_prompt", "")
|
24 |
return base_model, training_prompt
|
25 |
|
26 |
|
27 |
+
DESCRIPTION = "# [Tune-A-Video](https://tuneavideo.github.io/)"
|
28 |
if not torch.cuda.is_available():
|
29 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
30 |
|
31 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
|
|
32 |
|
33 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
34 |
pipe = InferencePipeline(HF_TOKEN)
|
35 |
app = InferenceUtil(HF_TOKEN)
|
36 |
|
37 |
+
with gr.Blocks(css="style.css") as demo:
|
38 |
gr.Markdown(DESCRIPTION)
|
39 |
|
40 |
with gr.Row():
|
41 |
with gr.Column():
|
42 |
with gr.Box():
|
43 |
model_id = gr.Dropdown(
|
44 |
+
label="Model ID",
|
45 |
choices=[
|
46 |
+
"Tune-A-Video-library/a-man-is-surfing",
|
47 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
48 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
49 |
],
|
50 |
+
value="Tune-A-Video-library/a-man-is-surfing",
|
51 |
+
)
|
52 |
+
with gr.Accordion(label="Model info (Base model and prompt used for training)", open=False):
|
|
|
|
|
53 |
with gr.Row():
|
54 |
+
base_model_used_for_training = gr.Text(label="Base model", interactive=False)
|
55 |
+
prompt_used_for_training = gr.Text(label="Training prompt", interactive=False)
|
56 |
+
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "A panda is surfing"')
|
57 |
+
video_length = gr.Slider(label="Video length", minimum=4, maximum=12, step=1, value=8)
|
58 |
+
fps = gr.Slider(label="FPS", minimum=1, maximum=12, step=1, value=1)
|
59 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0)
|
60 |
+
with gr.Accordion("Other Parameters", open=False):
|
61 |
+
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=100, step=1, value=50)
|
62 |
+
guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7.5)
|
63 |
+
|
64 |
+
run_button = gr.Button("Generate")
|
65 |
+
|
66 |
+
gr.Markdown(
|
67 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
- It takes a few minutes to download model first.
|
69 |
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
70 |
+
"""
|
71 |
+
)
|
72 |
with gr.Column():
|
73 |
+
result = gr.Video(label="Result")
|
74 |
with gr.Row():
|
75 |
examples = [
|
76 |
[
|
77 |
+
"Tune-A-Video-library/a-man-is-surfing",
|
78 |
+
"A panda is surfing.",
|
79 |
8,
|
80 |
1,
|
81 |
3,
|
|
|
83 |
7.5,
|
84 |
],
|
85 |
[
|
86 |
+
"Tune-A-Video-library/a-man-is-surfing",
|
87 |
+
"A racoon is surfing, cartoon style.",
|
88 |
8,
|
89 |
1,
|
90 |
3,
|
|
|
92 |
7.5,
|
93 |
],
|
94 |
[
|
95 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
96 |
+
"a handsome prince is playing guitar, modern disney style.",
|
97 |
8,
|
98 |
1,
|
99 |
123,
|
|
|
101 |
7.5,
|
102 |
],
|
103 |
[
|
104 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
105 |
+
"a magical princess is playing guitar, modern disney style.",
|
106 |
8,
|
107 |
1,
|
108 |
123,
|
|
|
110 |
7.5,
|
111 |
],
|
112 |
[
|
113 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
114 |
+
"a rabbit is playing guitar, modern disney style.",
|
115 |
8,
|
116 |
1,
|
117 |
123,
|
|
|
119 |
7.5,
|
120 |
],
|
121 |
[
|
122 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
123 |
+
"a baby is playing guitar, modern disney style.",
|
124 |
8,
|
125 |
1,
|
126 |
123,
|
|
|
128 |
7.5,
|
129 |
],
|
130 |
[
|
131 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
132 |
+
"(redshift style) spider man is skiing.",
|
133 |
8,
|
134 |
1,
|
135 |
123,
|
|
|
137 |
7.5,
|
138 |
],
|
139 |
[
|
140 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
141 |
+
"(redshift style) black widow is skiing.",
|
142 |
8,
|
143 |
1,
|
144 |
123,
|
|
|
146 |
7.5,
|
147 |
],
|
148 |
[
|
149 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
150 |
+
"(redshift style) batman is skiing.",
|
151 |
8,
|
152 |
1,
|
153 |
123,
|
|
|
155 |
7.5,
|
156 |
],
|
157 |
[
|
158 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
159 |
+
"(redshift style) hulk is skiing.",
|
160 |
8,
|
161 |
1,
|
162 |
123,
|
|
|
164 |
7.5,
|
165 |
],
|
166 |
]
|
167 |
+
gr.Examples(
|
168 |
+
examples=examples,
|
169 |
+
inputs=[
|
170 |
+
model_id,
|
171 |
+
prompt,
|
172 |
+
video_length,
|
173 |
+
fps,
|
174 |
+
seed,
|
175 |
+
num_steps,
|
176 |
+
guidance_scale,
|
177 |
+
],
|
178 |
+
outputs=result,
|
179 |
+
fn=pipe.run,
|
180 |
+
cache_examples=CACHE_EXAMPLES,
|
181 |
+
)
|
182 |
+
|
183 |
+
model_id.change(
|
184 |
+
fn=app.load_model_info,
|
185 |
+
inputs=model_id,
|
186 |
+
outputs=[
|
187 |
+
base_model_used_for_training,
|
188 |
+
prompt_used_for_training,
|
189 |
+
],
|
190 |
+
)
|
191 |
inputs = [
|
192 |
model_id,
|
193 |
prompt,
|
inference.py
CHANGED
@@ -13,7 +13,7 @@ from diffusers.utils.import_utils import is_xformers_available
|
|
13 |
from einops import rearrange
|
14 |
from huggingface_hub import ModelCard
|
15 |
|
16 |
-
sys.path.append(
|
17 |
|
18 |
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
@@ -23,8 +23,7 @@ class InferencePipeline:
|
|
23 |
def __init__(self, hf_token: str | None = None):
|
24 |
self.hf_token = hf_token
|
25 |
self.pipe = None
|
26 |
-
self.device = torch.device(
|
27 |
-
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
self.model_id = None
|
29 |
|
30 |
def clear(self) -> None:
|
@@ -39,10 +38,9 @@ class InferencePipeline:
|
|
39 |
return pathlib.Path(model_id).exists()
|
40 |
|
41 |
@staticmethod
|
42 |
-
def get_model_card(model_id: str,
|
43 |
-
hf_token: str | None = None) -> ModelCard:
|
44 |
if InferencePipeline.check_if_model_is_local(model_id):
|
45 |
-
card_path = (pathlib.Path(model_id) /
|
46 |
else:
|
47 |
card_path = model_id
|
48 |
return ModelCard.load(card_path, token=hf_token)
|
@@ -57,14 +55,11 @@ class InferencePipeline:
|
|
57 |
return
|
58 |
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
59 |
unet = UNet3DConditionModel.from_pretrained(
|
60 |
-
model_id,
|
61 |
-
|
62 |
-
|
63 |
-
use_auth_token=self.hf_token
|
64 |
-
|
65 |
-
unet=unet,
|
66 |
-
torch_dtype=torch.float16,
|
67 |
-
use_auth_token=self.hf_token)
|
68 |
pipe = pipe.to(self.device)
|
69 |
if is_xformers_available():
|
70 |
pipe.unet.enable_xformers_memory_efficient_attention()
|
@@ -82,7 +77,7 @@ class InferencePipeline:
|
|
82 |
guidance_scale: float,
|
83 |
) -> PIL.Image.Image:
|
84 |
if not torch.cuda.is_available():
|
85 |
-
raise gr.Error(
|
86 |
|
87 |
self.load_pipe(model_id)
|
88 |
|
@@ -97,10 +92,10 @@ class InferencePipeline:
|
|
97 |
generator=generator,
|
98 |
) # type: ignore
|
99 |
|
100 |
-
frames = rearrange(out.videos[0],
|
101 |
frames = (frames * 255).to(torch.uint8).numpy()
|
102 |
|
103 |
-
out_file = tempfile.NamedTemporaryFile(suffix=
|
104 |
writer = imageio.get_writer(out_file.name, fps=fps)
|
105 |
for frame in frames:
|
106 |
writer.append_data(frame)
|
|
|
13 |
from einops import rearrange
|
14 |
from huggingface_hub import ModelCard
|
15 |
|
16 |
+
sys.path.append("Tune-A-Video")
|
17 |
|
18 |
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
|
|
23 |
def __init__(self, hf_token: str | None = None):
|
24 |
self.hf_token = hf_token
|
25 |
self.pipe = None
|
26 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
27 |
self.model_id = None
|
28 |
|
29 |
def clear(self) -> None:
|
|
|
38 |
return pathlib.Path(model_id).exists()
|
39 |
|
40 |
@staticmethod
|
41 |
+
def get_model_card(model_id: str, hf_token: str | None = None) -> ModelCard:
|
|
|
42 |
if InferencePipeline.check_if_model_is_local(model_id):
|
43 |
+
card_path = (pathlib.Path(model_id) / "README.md").as_posix()
|
44 |
else:
|
45 |
card_path = model_id
|
46 |
return ModelCard.load(card_path, token=hf_token)
|
|
|
55 |
return
|
56 |
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
57 |
unet = UNet3DConditionModel.from_pretrained(
|
58 |
+
model_id, subfolder="unet", torch_dtype=torch.float16, use_auth_token=self.hf_token
|
59 |
+
)
|
60 |
+
pipe = TuneAVideoPipeline.from_pretrained(
|
61 |
+
base_model_id, unet=unet, torch_dtype=torch.float16, use_auth_token=self.hf_token
|
62 |
+
)
|
|
|
|
|
|
|
63 |
pipe = pipe.to(self.device)
|
64 |
if is_xformers_available():
|
65 |
pipe.unet.enable_xformers_memory_efficient_attention()
|
|
|
77 |
guidance_scale: float,
|
78 |
) -> PIL.Image.Image:
|
79 |
if not torch.cuda.is_available():
|
80 |
+
raise gr.Error("CUDA is not available.")
|
81 |
|
82 |
self.load_pipe(model_id)
|
83 |
|
|
|
92 |
generator=generator,
|
93 |
) # type: ignore
|
94 |
|
95 |
+
frames = rearrange(out.videos[0], "c t h w -> t h w c")
|
96 |
frames = (frames * 255).to(torch.uint8).numpy()
|
97 |
|
98 |
+
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
99 |
writer = imageio.get_writer(out_file.name, fps=fps)
|
100 |
for frame in frames:
|
101 |
writer.append_data(frame)
|