Add files
Browse files- .gitattributes +1 -0
- .gitignore +1 -2
- .gitmodules +3 -0
- .pre-commit-config.yaml +2 -2
- Dockerfile +59 -0
- README.md +2 -5
- Tune-A-Video +1 -0
- app.py +4 -4
- app_inference.py +60 -68
- app_training.py +25 -29
- app_upload.py +14 -14
- constants.py +5 -1
- inference.py +45 -36
- packages.txt +1 -0
- patch +15 -0
- requirements.txt +8 -4
- train_dreambooth_lora.py +0 -1026
- trainer.py +66 -76
- utils.py +16 -17
- wheel/xformers-0.0.16+bc08bbc.d20230130-cp310-cp310-linux_x86_64.whl +3 -0
.gitattributes
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.whl filter=lfs diff=lfs merge=lfs -text
|
2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
-
|
2 |
experiments/
|
3 |
-
wandb/
|
4 |
|
5 |
|
6 |
# Byte-compiled / optimized / DLL files
|
|
|
1 |
+
checkpoints/
|
2 |
experiments/
|
|
|
3 |
|
4 |
|
5 |
# Byte-compiled / optimized / DLL files
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "Tune-A-Video"]
|
2 |
+
path = Tune-A-Video
|
3 |
+
url = https://github.com/showlab/Tune-A-Video
|
.pre-commit-config.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
exclude:
|
2 |
repos:
|
3 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
rev: v4.2.0
|
@@ -21,7 +21,7 @@ repos:
|
|
21 |
- id: docformatter
|
22 |
args: ['--in-place']
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
-
rev: 5.
|
25 |
hooks:
|
26 |
- id: isort
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
|
|
1 |
+
exclude: patch
|
2 |
repos:
|
3 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
rev: v4.2.0
|
|
|
21 |
- id: docformatter
|
22 |
args: ['--in-place']
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.12.0
|
25 |
hooks:
|
26 |
- id: isort
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
Dockerfile
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y --no-install-recommends \
|
6 |
+
git \
|
7 |
+
git-lfs \
|
8 |
+
wget \
|
9 |
+
curl \
|
10 |
+
# ffmpeg \
|
11 |
+
ffmpeg \
|
12 |
+
x264 \
|
13 |
+
# python build dependencies \
|
14 |
+
build-essential \
|
15 |
+
libssl-dev \
|
16 |
+
zlib1g-dev \
|
17 |
+
libbz2-dev \
|
18 |
+
libreadline-dev \
|
19 |
+
libsqlite3-dev \
|
20 |
+
libncursesw5-dev \
|
21 |
+
xz-utils \
|
22 |
+
tk-dev \
|
23 |
+
libxml2-dev \
|
24 |
+
libxmlsec1-dev \
|
25 |
+
libffi-dev \
|
26 |
+
liblzma-dev && \
|
27 |
+
apt-get clean && \
|
28 |
+
rm -rf /var/lib/apt/lists/*
|
29 |
+
|
30 |
+
RUN useradd -m -u 1000 user
|
31 |
+
USER user
|
32 |
+
ENV HOME=/home/user \
|
33 |
+
PATH=/home/user/.local/bin:${PATH}
|
34 |
+
WORKDIR ${HOME}/app
|
35 |
+
|
36 |
+
RUN curl https://pyenv.run | bash
|
37 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
38 |
+
ENV PYTHON_VERSION=3.10.9
|
39 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
40 |
+
pyenv global ${PYTHON_VERSION} && \
|
41 |
+
pyenv rehash && \
|
42 |
+
pip install --no-cache-dir -U pip setuptools wheel
|
43 |
+
|
44 |
+
RUN pip install --no-cache-dir -U torch==1.13.1 torchvision==0.14.1
|
45 |
+
COPY --chown=1000 requirements.txt /tmp/requirements.txt
|
46 |
+
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
47 |
+
COPY --chown=1000 wheel/xformers-0.0.16+bc08bbc.d20230130-cp310-cp310-linux_x86_64.whl /tmp/xformers-0.0.16+bc08bbc.d20230130-cp310-cp310-linux_x86_64.whl
|
48 |
+
RUN pip install --no-cache-dir -U /tmp/xformers-0.0.16+bc08bbc.d20230130-cp310-cp310-linux_x86_64.whl
|
49 |
+
|
50 |
+
COPY --chown=1000 . ${HOME}/app
|
51 |
+
RUN cd Tune-A-Video && patch -p1 < ../patch
|
52 |
+
ENV PYTHONPATH=${HOME}/app \
|
53 |
+
PYTHONUNBUFFERED=1 \
|
54 |
+
GRADIO_ALLOW_FLAGGING=never \
|
55 |
+
GRADIO_NUM_PORTS=1 \
|
56 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
57 |
+
GRADIO_THEME=huggingface \
|
58 |
+
SYSTEM=spaces
|
59 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: ⚡
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
-
sdk:
|
7 |
-
sdk_version: 3.16.2
|
8 |
-
python_version: 3.10.9
|
9 |
-
app_file: app.py
|
10 |
pinned: false
|
11 |
license: mit
|
12 |
duplicated_from: lora-library/LoRA-DreamBooth-Training-UI
|
|
|
1 |
---
|
2 |
+
title: Tune-A-Video Training UI
|
3 |
emoji: ⚡
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
+
sdk: docker
|
|
|
|
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
duplicated_from: lora-library/LoRA-DreamBooth-Training-UI
|
Tune-A-Video
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit b2c8c3eeac0df5c5d9eccc4dd2153e17b83c638c
|
app.py
CHANGED
@@ -13,11 +13,11 @@ from app_upload import create_upload_demo
|
|
13 |
from inference import InferencePipeline
|
14 |
from trainer import Trainer
|
15 |
|
16 |
-
TITLE = '#
|
17 |
|
18 |
-
ORIGINAL_SPACE_ID = '
|
19 |
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
20 |
-
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private
|
21 |
|
22 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
23 |
'''
|
@@ -29,7 +29,7 @@ else:
|
|
29 |
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
30 |
<center>
|
31 |
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
32 |
-
"
|
33 |
</center>
|
34 |
'''
|
35 |
|
|
|
13 |
from inference import InferencePipeline
|
14 |
from trainer import Trainer
|
15 |
|
16 |
+
TITLE = '# Tune-A-Video Training UI'
|
17 |
|
18 |
+
ORIGINAL_SPACE_ID = 'hysts/Tune-A-Video-Training-UI'
|
19 |
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
20 |
+
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private A100 GPU.
|
21 |
|
22 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
23 |
'''
|
|
|
29 |
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
30 |
<center>
|
31 |
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
32 |
+
"A100 large" is required to run this demo.
|
33 |
</center>
|
34 |
'''
|
35 |
|
app_inference.py
CHANGED
@@ -7,18 +7,13 @@ import enum
|
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import HfApi
|
9 |
|
|
|
10 |
from inference import InferencePipeline
|
11 |
from utils import find_exp_dirs
|
12 |
|
13 |
-
SAMPLE_MODEL_IDS = [
|
14 |
-
'patrickvonplaten/lora_dreambooth_dog_example',
|
15 |
-
'sayakpaul/sd-model-finetuned-lora-t4',
|
16 |
-
]
|
17 |
-
|
18 |
|
19 |
class ModelSource(enum.Enum):
|
20 |
-
|
21 |
-
HUB_LIB = 'Hub (lora-library)'
|
22 |
LOCAL = 'Local'
|
23 |
|
24 |
|
@@ -26,47 +21,41 @@ class InferenceUtil:
|
|
26 |
def __init__(self, hf_token: str | None):
|
27 |
self.hf_token = hf_token
|
28 |
|
29 |
-
|
30 |
-
def load_sample_lora_model_list():
|
31 |
-
return gr.update(choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0])
|
32 |
-
|
33 |
-
def load_hub_lora_model_list(self) -> dict:
|
34 |
api = HfApi(token=self.hf_token)
|
35 |
choices = [
|
36 |
-
info.modelId
|
|
|
37 |
]
|
38 |
return gr.update(choices=choices,
|
39 |
value=choices[0] if choices else None)
|
40 |
|
41 |
@staticmethod
|
42 |
-
def
|
43 |
choices = find_exp_dirs()
|
44 |
return gr.update(choices=choices,
|
45 |
value=choices[0] if choices else None)
|
46 |
|
47 |
-
def
|
48 |
-
if model_source == ModelSource.
|
49 |
-
return self.
|
50 |
-
elif model_source == ModelSource.HUB_LIB.value:
|
51 |
-
return self.load_hub_lora_model_list()
|
52 |
elif model_source == ModelSource.LOCAL.value:
|
53 |
-
return self.
|
54 |
else:
|
55 |
raise ValueError
|
56 |
|
57 |
-
def load_model_info(self,
|
58 |
try:
|
59 |
-
card = InferencePipeline.get_model_card(
|
60 |
-
self.hf_token)
|
61 |
except Exception:
|
62 |
return '', ''
|
63 |
base_model = getattr(card.data, 'base_model', '')
|
64 |
-
|
65 |
-
return base_model,
|
66 |
|
67 |
-
def
|
68 |
self, model_source: str) -> tuple[dict, str, str]:
|
69 |
-
model_list_update = self.
|
70 |
model_list = model_list_update['choices']
|
71 |
model_info = self.load_model_info(model_list[0] if model_list else '')
|
72 |
return model_list_update, *model_info
|
@@ -83,30 +72,34 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
83 |
model_source = gr.Radio(
|
84 |
label='Model Source',
|
85 |
choices=[_.value for _ in ModelSource],
|
86 |
-
value=ModelSource.
|
87 |
reload_button = gr.Button('Reload Model List')
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
with gr.Accordion(
|
92 |
label=
|
93 |
-
'Model info (Base model and
|
94 |
open=False):
|
95 |
with gr.Row():
|
96 |
base_model_used_for_training = gr.Text(
|
97 |
label='Base model', interactive=False)
|
98 |
-
|
99 |
-
label='
|
100 |
prompt = gr.Textbox(
|
101 |
label='Prompt',
|
102 |
max_lines=1,
|
103 |
-
placeholder='Example: "A
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
seed = gr.Slider(label='Seed',
|
111 |
minimum=0,
|
112 |
maximum=100000,
|
@@ -117,7 +110,7 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
117 |
minimum=0,
|
118 |
maximum=100,
|
119 |
step=1,
|
120 |
-
value=
|
121 |
guidance_scale = gr.Slider(label='CFG Scale',
|
122 |
minimum=0,
|
123 |
maximum=50,
|
@@ -130,34 +123,33 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
130 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
131 |
''')
|
132 |
with gr.Column():
|
133 |
-
result = gr.
|
134 |
-
|
135 |
-
model_source.change(
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
instance_prompt_used_for_training,
|
156 |
-
])
|
157 |
inputs = [
|
158 |
-
|
159 |
prompt,
|
160 |
-
|
|
|
161 |
seed,
|
162 |
num_steps,
|
163 |
guidance_scale,
|
|
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
from inference import InferencePipeline
|
12 |
from utils import find_exp_dirs
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class ModelSource(enum.Enum):
|
16 |
+
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
|
|
17 |
LOCAL = 'Local'
|
18 |
|
19 |
|
|
|
21 |
def __init__(self, hf_token: str | None):
|
22 |
self.hf_token = hf_token
|
23 |
|
24 |
+
def load_hub_model_list(self) -> dict:
|
|
|
|
|
|
|
|
|
25 |
api = HfApi(token=self.hf_token)
|
26 |
choices = [
|
27 |
+
info.modelId
|
28 |
+
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
|
29 |
]
|
30 |
return gr.update(choices=choices,
|
31 |
value=choices[0] if choices else None)
|
32 |
|
33 |
@staticmethod
|
34 |
+
def load_local_model_list() -> dict:
|
35 |
choices = find_exp_dirs()
|
36 |
return gr.update(choices=choices,
|
37 |
value=choices[0] if choices else None)
|
38 |
|
39 |
+
def reload_model_list(self, model_source: str) -> dict:
|
40 |
+
if model_source == ModelSource.HUB_LIB.value:
|
41 |
+
return self.load_hub_model_list()
|
|
|
|
|
42 |
elif model_source == ModelSource.LOCAL.value:
|
43 |
+
return self.load_local_model_list()
|
44 |
else:
|
45 |
raise ValueError
|
46 |
|
47 |
+
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
48 |
try:
|
49 |
+
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
|
|
50 |
except Exception:
|
51 |
return '', ''
|
52 |
base_model = getattr(card.data, 'base_model', '')
|
53 |
+
training_prompt = getattr(card.data, 'training_prompt', '')
|
54 |
+
return base_model, training_prompt
|
55 |
|
56 |
+
def reload_model_list_and_update_model_info(
|
57 |
self, model_source: str) -> tuple[dict, str, str]:
|
58 |
+
model_list_update = self.reload_model_list(model_source)
|
59 |
model_list = model_list_update['choices']
|
60 |
model_info = self.load_model_info(model_list[0] if model_list else '')
|
61 |
return model_list_update, *model_info
|
|
|
72 |
model_source = gr.Radio(
|
73 |
label='Model Source',
|
74 |
choices=[_.value for _ in ModelSource],
|
75 |
+
value=ModelSource.HUB_LIB.value)
|
76 |
reload_button = gr.Button('Reload Model List')
|
77 |
+
model_id = gr.Dropdown(label='Model ID',
|
78 |
+
choices=None,
|
79 |
+
value=None)
|
80 |
with gr.Accordion(
|
81 |
label=
|
82 |
+
'Model info (Base model and prompt used for training)',
|
83 |
open=False):
|
84 |
with gr.Row():
|
85 |
base_model_used_for_training = gr.Text(
|
86 |
label='Base model', interactive=False)
|
87 |
+
prompt_used_for_training = gr.Text(
|
88 |
+
label='Training prompt', interactive=False)
|
89 |
prompt = gr.Textbox(
|
90 |
label='Prompt',
|
91 |
max_lines=1,
|
92 |
+
placeholder='Example: "A panda is surfing"')
|
93 |
+
video_length = gr.Slider(label='Video length',
|
94 |
+
minimum=4,
|
95 |
+
maximum=12,
|
96 |
+
step=1,
|
97 |
+
value=8)
|
98 |
+
fps = gr.Slider(label='FPS',
|
99 |
+
minimum=1,
|
100 |
+
maximum=12,
|
101 |
+
step=1,
|
102 |
+
value=1)
|
103 |
seed = gr.Slider(label='Seed',
|
104 |
minimum=0,
|
105 |
maximum=100000,
|
|
|
110 |
minimum=0,
|
111 |
maximum=100,
|
112 |
step=1,
|
113 |
+
value=50)
|
114 |
guidance_scale = gr.Slider(label='CFG Scale',
|
115 |
minimum=0,
|
116 |
maximum=50,
|
|
|
123 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
124 |
''')
|
125 |
with gr.Column():
|
126 |
+
result = gr.Video(label='Result')
|
127 |
+
|
128 |
+
model_source.change(fn=app.reload_model_list_and_update_model_info,
|
129 |
+
inputs=model_source,
|
130 |
+
outputs=[
|
131 |
+
model_id,
|
132 |
+
base_model_used_for_training,
|
133 |
+
prompt_used_for_training,
|
134 |
+
])
|
135 |
+
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
136 |
+
inputs=model_source,
|
137 |
+
outputs=[
|
138 |
+
model_id,
|
139 |
+
base_model_used_for_training,
|
140 |
+
prompt_used_for_training,
|
141 |
+
])
|
142 |
+
model_id.change(fn=app.load_model_info,
|
143 |
+
inputs=model_id,
|
144 |
+
outputs=[
|
145 |
+
base_model_used_for_training,
|
146 |
+
prompt_used_for_training,
|
147 |
+
])
|
|
|
|
|
148 |
inputs = [
|
149 |
+
model_id,
|
150 |
prompt,
|
151 |
+
video_length,
|
152 |
+
fps,
|
153 |
seed,
|
154 |
num_steps,
|
155 |
guidance_scale,
|
app_training.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6 |
|
7 |
import gradio as gr
|
8 |
|
9 |
-
from constants import UploadTarget
|
10 |
from inference import InferencePipeline
|
11 |
from trainer import Trainer
|
12 |
|
@@ -18,12 +18,13 @@ def create_training_demo(trainer: Trainer,
|
|
18 |
with gr.Column():
|
19 |
with gr.Box():
|
20 |
gr.Markdown('Training Data')
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
gr.Markdown('''
|
25 |
-
- Upload
|
26 |
-
- For an instance prompt, use a unique, made up word to avoid collisions.
|
27 |
''')
|
28 |
with gr.Box():
|
29 |
gr.Markdown('Output Model')
|
@@ -46,25 +47,26 @@ def create_training_demo(trainer: Trainer,
|
|
46 |
upload_to = gr.Radio(
|
47 |
label='Upload to',
|
48 |
choices=[_.value for _ in UploadTarget],
|
49 |
-
value=UploadTarget.
|
50 |
-
gr.Markdown('''
|
51 |
-
- By default, trained models will be uploaded to [
|
52 |
-
- You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}.
|
53 |
''')
|
54 |
|
55 |
with gr.Box():
|
56 |
gr.Markdown('Training Parameters')
|
57 |
with gr.Row():
|
58 |
-
base_model = gr.Text(
|
59 |
-
|
60 |
-
|
61 |
-
max_lines=1)
|
62 |
resolution = gr.Dropdown(choices=['512', '768'],
|
63 |
value='512',
|
64 |
-
label='Resolution'
|
|
|
65 |
num_training_steps = gr.Number(
|
66 |
-
label='Number of Training Steps', value=
|
67 |
-
learning_rate = gr.Number(label='Learning Rate',
|
|
|
68 |
gradient_accumulation = gr.Number(
|
69 |
label='Number of Gradient Accumulation',
|
70 |
value=1,
|
@@ -75,25 +77,20 @@ def create_training_demo(trainer: Trainer,
|
|
75 |
step=1,
|
76 |
value=0)
|
77 |
fp16 = gr.Checkbox(label='FP16', value=True)
|
78 |
-
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=
|
79 |
checkpointing_steps = gr.Number(label='Checkpointing Steps',
|
80 |
-
value=
|
81 |
precision=0)
|
82 |
-
use_wandb = gr.Checkbox(label='Use W&B',
|
83 |
-
value=False,
|
84 |
-
interactive=bool(
|
85 |
-
os.getenv('WANDB_API_KEY')))
|
86 |
validation_epochs = gr.Number(label='Validation Epochs',
|
87 |
value=100,
|
88 |
precision=0)
|
89 |
gr.Markdown('''
|
90 |
- The base model must be a model that is compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
91 |
- It takes a few minutes to download the base model first.
|
92 |
-
- It will take about
|
|
|
93 |
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
94 |
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
95 |
-
- You need to set the environment variable `WANDB_API_KEY` if you'd like to use [W&B](https://wandb.ai/site). See [W&B documentation](https://docs.wandb.ai/guides/track/advanced/environment-variables).
|
96 |
-
- **Note:** Due to [this issue](https://github.com/huggingface/accelerate/issues/944), currently, training will not terminate properly if you use W&B.
|
97 |
''')
|
98 |
|
99 |
remove_gpu_after_training = gr.Checkbox(
|
@@ -111,8 +108,8 @@ def create_training_demo(trainer: Trainer,
|
|
111 |
run_button.click(fn=pipe.clear)
|
112 |
run_button.click(fn=trainer.run,
|
113 |
inputs=[
|
114 |
-
|
115 |
-
|
116 |
output_model_name,
|
117 |
delete_existing_model,
|
118 |
validation_prompt,
|
@@ -125,7 +122,6 @@ def create_training_demo(trainer: Trainer,
|
|
125 |
fp16,
|
126 |
use_8bit_adam,
|
127 |
checkpointing_steps,
|
128 |
-
use_wandb,
|
129 |
validation_epochs,
|
130 |
upload_to_hub,
|
131 |
use_private_repo,
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
|
9 |
+
from constants import MODEL_LIBRARY_ORG_NAME, SAMPLE_MODEL_REPO, UploadTarget
|
10 |
from inference import InferencePipeline
|
11 |
from trainer import Trainer
|
12 |
|
|
|
18 |
with gr.Column():
|
19 |
with gr.Box():
|
20 |
gr.Markdown('Training Data')
|
21 |
+
training_video = gr.File(label='Training video')
|
22 |
+
training_prompt = gr.Textbox(
|
23 |
+
label='Training prompt',
|
24 |
+
max_lines=1,
|
25 |
+
placeholder='A man is surfing')
|
26 |
gr.Markdown('''
|
27 |
+
- Upload a video and write a prompt describing the video.
|
|
|
28 |
''')
|
29 |
with gr.Box():
|
30 |
gr.Markdown('Output Model')
|
|
|
47 |
upload_to = gr.Radio(
|
48 |
label='Upload to',
|
49 |
choices=[_.value for _ in UploadTarget],
|
50 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
51 |
+
gr.Markdown(f'''
|
52 |
+
- By default, trained models will be uploaded to [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (see [this example model](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{SAMPLE_MODEL_REPO})).
|
53 |
+
- You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{{your_username}}/{{model_name}}.
|
54 |
''')
|
55 |
|
56 |
with gr.Box():
|
57 |
gr.Markdown('Training Parameters')
|
58 |
with gr.Row():
|
59 |
+
base_model = gr.Text(label='Base Model',
|
60 |
+
value='CompVis/stable-diffusion-v1-4',
|
61 |
+
max_lines=1)
|
|
|
62 |
resolution = gr.Dropdown(choices=['512', '768'],
|
63 |
value='512',
|
64 |
+
label='Resolution',
|
65 |
+
visible=False)
|
66 |
num_training_steps = gr.Number(
|
67 |
+
label='Number of Training Steps', value=300, precision=0)
|
68 |
+
learning_rate = gr.Number(label='Learning Rate',
|
69 |
+
value=0.000035)
|
70 |
gradient_accumulation = gr.Number(
|
71 |
label='Number of Gradient Accumulation',
|
72 |
value=1,
|
|
|
77 |
step=1,
|
78 |
value=0)
|
79 |
fp16 = gr.Checkbox(label='FP16', value=True)
|
80 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=False)
|
81 |
checkpointing_steps = gr.Number(label='Checkpointing Steps',
|
82 |
+
value=1000,
|
83 |
precision=0)
|
|
|
|
|
|
|
|
|
84 |
validation_epochs = gr.Number(label='Validation Epochs',
|
85 |
value=100,
|
86 |
precision=0)
|
87 |
gr.Markdown('''
|
88 |
- The base model must be a model that is compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
89 |
- It takes a few minutes to download the base model first.
|
90 |
+
- It will take about 4 minutes to train for 300 steps with an A100 GPU.
|
91 |
+
- It takes a few minutes to upload your trained model.
|
92 |
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
93 |
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
|
|
|
|
94 |
''')
|
95 |
|
96 |
remove_gpu_after_training = gr.Checkbox(
|
|
|
108 |
run_button.click(fn=pipe.clear)
|
109 |
run_button.click(fn=trainer.run,
|
110 |
inputs=[
|
111 |
+
training_video,
|
112 |
+
training_prompt,
|
113 |
output_model_name,
|
114 |
delete_existing_model,
|
115 |
validation_prompt,
|
|
|
122 |
fp16,
|
123 |
use_8bit_adam,
|
124 |
checkpointing_steps,
|
|
|
125 |
validation_epochs,
|
126 |
upload_to_hub,
|
127 |
use_private_repo,
|
app_upload.py
CHANGED
@@ -7,13 +7,13 @@ import pathlib
|
|
7 |
import gradio as gr
|
8 |
import slugify
|
9 |
|
10 |
-
from constants import UploadTarget
|
11 |
from uploader import Uploader
|
12 |
from utils import find_exp_dirs
|
13 |
|
14 |
|
15 |
-
class
|
16 |
-
def
|
17 |
self,
|
18 |
folder_path: str,
|
19 |
repo_name: str,
|
@@ -29,8 +29,8 @@ class LoRAModelUploader(Uploader):
|
|
29 |
|
30 |
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
31 |
organization = ''
|
32 |
-
elif upload_to == UploadTarget.
|
33 |
-
organization =
|
34 |
else:
|
35 |
raise ValueError
|
36 |
|
@@ -41,14 +41,14 @@ class LoRAModelUploader(Uploader):
|
|
41 |
delete_existing_repo=delete_existing_repo)
|
42 |
|
43 |
|
44 |
-
def
|
45 |
-
choices = find_exp_dirs(
|
46 |
return gr.update(choices=choices, value=choices[0] if choices else None)
|
47 |
|
48 |
|
49 |
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
50 |
-
uploader =
|
51 |
-
model_dirs = find_exp_dirs(
|
52 |
|
53 |
with gr.Blocks() as demo:
|
54 |
with gr.Box():
|
@@ -66,20 +66,20 @@ def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
|
66 |
label='Delete existing repo of the same name', value=False)
|
67 |
upload_to = gr.Radio(label='Upload to',
|
68 |
choices=[_.value for _ in UploadTarget],
|
69 |
-
value=UploadTarget.
|
70 |
model_name = gr.Textbox(label='Model Name')
|
71 |
upload_button = gr.Button('Upload')
|
72 |
-
gr.Markdown('''
|
73 |
-
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{your_username}/{model_name}) or to the public [
|
74 |
''')
|
75 |
with gr.Box():
|
76 |
gr.Markdown('Output message')
|
77 |
output_message = gr.Markdown()
|
78 |
|
79 |
-
reload_button.click(fn=
|
80 |
inputs=None,
|
81 |
outputs=model_dir)
|
82 |
-
upload_button.click(fn=uploader.
|
83 |
inputs=[
|
84 |
model_dir,
|
85 |
model_name,
|
|
|
7 |
import gradio as gr
|
8 |
import slugify
|
9 |
|
10 |
+
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
|
11 |
from uploader import Uploader
|
12 |
from utils import find_exp_dirs
|
13 |
|
14 |
|
15 |
+
class ModelUploader(Uploader):
|
16 |
+
def upload_model(
|
17 |
self,
|
18 |
folder_path: str,
|
19 |
repo_name: str,
|
|
|
29 |
|
30 |
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
31 |
organization = ''
|
32 |
+
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
33 |
+
organization = MODEL_LIBRARY_ORG_NAME
|
34 |
else:
|
35 |
raise ValueError
|
36 |
|
|
|
41 |
delete_existing_repo=delete_existing_repo)
|
42 |
|
43 |
|
44 |
+
def load_local_model_list() -> dict:
|
45 |
+
choices = find_exp_dirs()
|
46 |
return gr.update(choices=choices, value=choices[0] if choices else None)
|
47 |
|
48 |
|
49 |
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
50 |
+
uploader = ModelUploader(hf_token)
|
51 |
+
model_dirs = find_exp_dirs()
|
52 |
|
53 |
with gr.Blocks() as demo:
|
54 |
with gr.Box():
|
|
|
66 |
label='Delete existing repo of the same name', value=False)
|
67 |
upload_to = gr.Radio(label='Upload to',
|
68 |
choices=[_.value for _ in UploadTarget],
|
69 |
+
value=UploadTarget.MODEL_LIBRARY.value)
|
70 |
model_name = gr.Textbox(label='Model Name')
|
71 |
upload_button = gr.Button('Upload')
|
72 |
+
gr.Markdown(f'''
|
73 |
+
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
|
74 |
''')
|
75 |
with gr.Box():
|
76 |
gr.Markdown('Output message')
|
77 |
output_message = gr.Markdown()
|
78 |
|
79 |
+
reload_button.click(fn=load_local_model_list,
|
80 |
inputs=None,
|
81 |
outputs=model_dir)
|
82 |
+
upload_button.click(fn=uploader.upload_model,
|
83 |
inputs=[
|
84 |
model_dir,
|
85 |
model_name,
|
constants.py
CHANGED
@@ -3,4 +3,8 @@ import enum
|
|
3 |
|
4 |
class UploadTarget(enum.Enum):
|
5 |
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
-
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class UploadTarget(enum.Enum):
|
5 |
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
+
MODEL_LIBRARY = 'Tune-A-Video Library'
|
7 |
+
|
8 |
+
|
9 |
+
MODEL_LIBRARY_ORG_NAME = 'Tune-A-Video-library'
|
10 |
+
SAMPLE_MODEL_REPO = 'Tune-A-Video-library/a-man-is-surfing'
|
inference.py
CHANGED
@@ -2,13 +2,21 @@ from __future__ import annotations
|
|
2 |
|
3 |
import gc
|
4 |
import pathlib
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
|
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
-
from
|
10 |
from huggingface_hub import ModelCard
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class InferencePipeline:
|
14 |
def __init__(self, hf_token: str | None = None):
|
@@ -16,20 +24,18 @@ class InferencePipeline:
|
|
16 |
self.pipe = None
|
17 |
self.device = torch.device(
|
18 |
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
19 |
-
self.
|
20 |
-
self.base_model_id = None
|
21 |
|
22 |
def clear(self) -> None:
|
23 |
-
self.
|
24 |
-
self.base_model_id = None
|
25 |
del self.pipe
|
26 |
self.pipe = None
|
27 |
torch.cuda.empty_cache()
|
28 |
gc.collect()
|
29 |
|
30 |
@staticmethod
|
31 |
-
def check_if_model_is_local(
|
32 |
-
return pathlib.Path(
|
33 |
|
34 |
@staticmethod
|
35 |
def get_model_card(model_id: str,
|
@@ -41,39 +47,30 @@ class InferencePipeline:
|
|
41 |
return ModelCard.load(card_path, token=hf_token)
|
42 |
|
43 |
@staticmethod
|
44 |
-
def get_base_model_info(
|
45 |
-
|
46 |
-
card = InferencePipeline.get_model_card(lora_model_id, hf_token)
|
47 |
return card.data.base_model
|
48 |
|
49 |
-
def load_pipe(self,
|
50 |
-
if
|
51 |
return
|
52 |
-
base_model_id = self.get_base_model_info(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
pipe = pipe.to(self.device)
|
63 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
64 |
-
pipe.scheduler.config)
|
65 |
-
self.pipe = pipe
|
66 |
-
self.pipe.unet.load_attn_procs( # type: ignore
|
67 |
-
lora_model_id, use_auth_token=self.hf_token)
|
68 |
-
|
69 |
-
self.lora_model_id = lora_model_id # type: ignore
|
70 |
-
self.base_model_id = base_model_id # type: ignore
|
71 |
|
72 |
def run(
|
73 |
self,
|
74 |
-
|
75 |
prompt: str,
|
76 |
-
|
|
|
77 |
seed: int,
|
78 |
n_steps: int,
|
79 |
guidance_scale: float,
|
@@ -81,14 +78,26 @@ class InferencePipeline:
|
|
81 |
if not torch.cuda.is_available():
|
82 |
raise gr.Error('CUDA is not available.')
|
83 |
|
84 |
-
self.load_pipe(
|
85 |
|
86 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
87 |
out = self.pipe(
|
88 |
prompt,
|
|
|
|
|
|
|
89 |
num_inference_steps=n_steps,
|
90 |
guidance_scale=guidance_scale,
|
91 |
generator=generator,
|
92 |
-
cross_attention_kwargs={'scale': lora_scale},
|
93 |
) # type: ignore
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gc
|
4 |
import pathlib
|
5 |
+
import sys
|
6 |
+
import tempfile
|
7 |
|
8 |
import gradio as gr
|
9 |
+
import imageio
|
10 |
import PIL.Image
|
11 |
import torch
|
12 |
+
from einops import rearrange
|
13 |
from huggingface_hub import ModelCard
|
14 |
|
15 |
+
sys.path.append('Tune-A-Video')
|
16 |
+
|
17 |
+
from tuneavideo.models.unet import UNet3DConditionModel
|
18 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
19 |
+
|
20 |
|
21 |
class InferencePipeline:
|
22 |
def __init__(self, hf_token: str | None = None):
|
|
|
24 |
self.pipe = None
|
25 |
self.device = torch.device(
|
26 |
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
27 |
+
self.model_id = None
|
|
|
28 |
|
29 |
def clear(self) -> None:
|
30 |
+
self.model_id = None
|
|
|
31 |
del self.pipe
|
32 |
self.pipe = None
|
33 |
torch.cuda.empty_cache()
|
34 |
gc.collect()
|
35 |
|
36 |
@staticmethod
|
37 |
+
def check_if_model_is_local(model_id: str) -> bool:
|
38 |
+
return pathlib.Path(model_id).exists()
|
39 |
|
40 |
@staticmethod
|
41 |
def get_model_card(model_id: str,
|
|
|
47 |
return ModelCard.load(card_path, token=hf_token)
|
48 |
|
49 |
@staticmethod
|
50 |
+
def get_base_model_info(model_id: str, hf_token: str | None = None) -> str:
|
51 |
+
card = InferencePipeline.get_model_card(model_id, hf_token)
|
|
|
52 |
return card.data.base_model
|
53 |
|
54 |
+
def load_pipe(self, model_id: str) -> None:
|
55 |
+
if model_id == self.model_id:
|
56 |
return
|
57 |
+
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
58 |
+
unet = UNet3DConditionModel.from_pretrained(model_id,
|
59 |
+
subfolder='unet',
|
60 |
+
torch_dtype=torch.float16)
|
61 |
+
pipe = TuneAVideoPipeline.from_pretrained(base_model_id,
|
62 |
+
unet=unet,
|
63 |
+
torch_dtype=torch.float16)
|
64 |
+
pipe = pipe.to(self.device)
|
65 |
+
self.pipe = pipe
|
66 |
+
self.model_id = model_id # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def run(
|
69 |
self,
|
70 |
+
model_id: str,
|
71 |
prompt: str,
|
72 |
+
video_length: int,
|
73 |
+
fps: int,
|
74 |
seed: int,
|
75 |
n_steps: int,
|
76 |
guidance_scale: float,
|
|
|
78 |
if not torch.cuda.is_available():
|
79 |
raise gr.Error('CUDA is not available.')
|
80 |
|
81 |
+
self.load_pipe(model_id)
|
82 |
|
83 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
84 |
out = self.pipe(
|
85 |
prompt,
|
86 |
+
video_length=video_length,
|
87 |
+
width=512,
|
88 |
+
height=512,
|
89 |
num_inference_steps=n_steps,
|
90 |
guidance_scale=guidance_scale,
|
91 |
generator=generator,
|
|
|
92 |
) # type: ignore
|
93 |
+
|
94 |
+
frames = rearrange(out.videos[0], 'c t h w -> t h w c')
|
95 |
+
frames = (frames * 255).to(torch.uint8).numpy()
|
96 |
+
|
97 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
98 |
+
writer = imageio.get_writer(out_file.name, fps=fps)
|
99 |
+
for frame in frames:
|
100 |
+
writer.append_data(frame)
|
101 |
+
writer.close()
|
102 |
+
|
103 |
+
return out_file.name
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
patch
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/train_tuneavideo.py b/train_tuneavideo.py
|
2 |
+
index 66d51b2..86b2a5d 100644
|
3 |
+
--- a/train_tuneavideo.py
|
4 |
+
+++ b/train_tuneavideo.py
|
5 |
+
@@ -94,8 +94,8 @@ def main(
|
6 |
+
|
7 |
+
# Handle the output folder creation
|
8 |
+
if accelerator.is_main_process:
|
9 |
+
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
10 |
+
- output_dir = os.path.join(output_dir, now)
|
11 |
+
+ #now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
12 |
+
+ #output_dir = os.path.join(output_dir, now)
|
13 |
+
os.makedirs(output_dir, exist_ok=True)
|
14 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
15 |
+
|
requirements.txt
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
accelerate==0.15.0
|
2 |
-
bitsandbytes==0.
|
3 |
-
|
4 |
-
|
|
|
5 |
ftfy==6.1.1
|
6 |
gradio==3.16.2
|
7 |
huggingface-hub==0.12.0
|
|
|
|
|
|
|
8 |
Pillow==9.4.0
|
9 |
python-slugify==7.0.0
|
10 |
tensorboard==2.11.2
|
11 |
torch==1.13.1
|
12 |
torchvision==0.14.1
|
13 |
transformers==4.26.0
|
14 |
-
|
|
|
1 |
accelerate==0.15.0
|
2 |
+
bitsandbytes==0.35.4
|
3 |
+
decord==0.6.0
|
4 |
+
diffusers[torch]==0.11.1
|
5 |
+
einops==0.6.0
|
6 |
ftfy==6.1.1
|
7 |
gradio==3.16.2
|
8 |
huggingface-hub==0.12.0
|
9 |
+
imageio==2.25.0
|
10 |
+
imageio-ffmpeg==0.4.8
|
11 |
+
omegaconf==2.3.0
|
12 |
Pillow==9.4.0
|
13 |
python-slugify==7.0.0
|
14 |
tensorboard==2.11.2
|
15 |
torch==1.13.1
|
16 |
torchvision==0.14.1
|
17 |
transformers==4.26.0
|
18 |
+
triton==2.0.0.dev20221202
|
train_dreambooth_lora.py
DELETED
@@ -1,1026 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding=utf-8
|
3 |
-
#
|
4 |
-
# This file is adapted from https://github.com/huggingface/diffusers/blob/febaf863026bd014b7a14349336544fc109d0f57/examples/dreambooth/train_dreambooth_lora.py
|
5 |
-
# The original license is as below:
|
6 |
-
#
|
7 |
-
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
|
20 |
-
import argparse
|
21 |
-
import hashlib
|
22 |
-
import logging
|
23 |
-
import math
|
24 |
-
import os
|
25 |
-
import warnings
|
26 |
-
from pathlib import Path
|
27 |
-
from typing import Optional
|
28 |
-
|
29 |
-
import numpy as np
|
30 |
-
import torch
|
31 |
-
import torch.nn.functional as F
|
32 |
-
import torch.utils.checkpoint
|
33 |
-
from torch.utils.data import Dataset
|
34 |
-
|
35 |
-
import datasets
|
36 |
-
import diffusers
|
37 |
-
import transformers
|
38 |
-
from accelerate import Accelerator
|
39 |
-
from accelerate.logging import get_logger
|
40 |
-
from accelerate.utils import set_seed
|
41 |
-
from diffusers import (
|
42 |
-
AutoencoderKL,
|
43 |
-
DDPMScheduler,
|
44 |
-
DiffusionPipeline,
|
45 |
-
DPMSolverMultistepScheduler,
|
46 |
-
UNet2DConditionModel,
|
47 |
-
)
|
48 |
-
from diffusers.loaders import AttnProcsLayers
|
49 |
-
from diffusers.models.cross_attention import LoRACrossAttnProcessor
|
50 |
-
from diffusers.optimization import get_scheduler
|
51 |
-
from diffusers.utils import check_min_version, is_wandb_available
|
52 |
-
from diffusers.utils.import_utils import is_xformers_available
|
53 |
-
from huggingface_hub import HfFolder, Repository, create_repo, whoami
|
54 |
-
from PIL import Image
|
55 |
-
from torchvision import transforms
|
56 |
-
from tqdm.auto import tqdm
|
57 |
-
from transformers import AutoTokenizer, PretrainedConfig
|
58 |
-
|
59 |
-
|
60 |
-
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
61 |
-
check_min_version("0.12.0.dev0")
|
62 |
-
|
63 |
-
logger = get_logger(__name__)
|
64 |
-
|
65 |
-
|
66 |
-
def save_model_card(repo_name, images=None, base_model=str, prompt=str, repo_folder=None):
|
67 |
-
img_str = ""
|
68 |
-
for i, image in enumerate(images):
|
69 |
-
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
70 |
-
img_str += f"![img_{i}](./image_{i}.png)\n"
|
71 |
-
|
72 |
-
yaml = f"""
|
73 |
-
---
|
74 |
-
license: creativeml-openrail-m
|
75 |
-
base_model: {base_model}
|
76 |
-
tags:
|
77 |
-
- stable-diffusion
|
78 |
-
- stable-diffusion-diffusers
|
79 |
-
- text-to-image
|
80 |
-
- diffusers
|
81 |
-
- lora
|
82 |
-
inference: true
|
83 |
-
---
|
84 |
-
"""
|
85 |
-
model_card = f"""
|
86 |
-
# LoRA DreamBooth - {repo_name}
|
87 |
-
|
88 |
-
These are LoRA adaption weights for {repo_name}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
|
89 |
-
{img_str}
|
90 |
-
"""
|
91 |
-
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
92 |
-
f.write(yaml + model_card)
|
93 |
-
|
94 |
-
|
95 |
-
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
96 |
-
text_encoder_config = PretrainedConfig.from_pretrained(
|
97 |
-
pretrained_model_name_or_path,
|
98 |
-
subfolder="text_encoder",
|
99 |
-
revision=revision,
|
100 |
-
)
|
101 |
-
model_class = text_encoder_config.architectures[0]
|
102 |
-
|
103 |
-
if model_class == "CLIPTextModel":
|
104 |
-
from transformers import CLIPTextModel
|
105 |
-
|
106 |
-
return CLIPTextModel
|
107 |
-
elif model_class == "RobertaSeriesModelWithTransformation":
|
108 |
-
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
109 |
-
|
110 |
-
return RobertaSeriesModelWithTransformation
|
111 |
-
else:
|
112 |
-
raise ValueError(f"{model_class} is not supported.")
|
113 |
-
|
114 |
-
|
115 |
-
def parse_args(input_args=None):
|
116 |
-
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
117 |
-
parser.add_argument(
|
118 |
-
"--pretrained_model_name_or_path",
|
119 |
-
type=str,
|
120 |
-
default=None,
|
121 |
-
required=True,
|
122 |
-
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
123 |
-
)
|
124 |
-
parser.add_argument(
|
125 |
-
"--revision",
|
126 |
-
type=str,
|
127 |
-
default=None,
|
128 |
-
required=False,
|
129 |
-
help="Revision of pretrained model identifier from huggingface.co/models.",
|
130 |
-
)
|
131 |
-
parser.add_argument(
|
132 |
-
"--tokenizer_name",
|
133 |
-
type=str,
|
134 |
-
default=None,
|
135 |
-
help="Pretrained tokenizer name or path if not the same as model_name",
|
136 |
-
)
|
137 |
-
parser.add_argument(
|
138 |
-
"--instance_data_dir",
|
139 |
-
type=str,
|
140 |
-
default=None,
|
141 |
-
required=True,
|
142 |
-
help="A folder containing the training data of instance images.",
|
143 |
-
)
|
144 |
-
parser.add_argument(
|
145 |
-
"--class_data_dir",
|
146 |
-
type=str,
|
147 |
-
default=None,
|
148 |
-
required=False,
|
149 |
-
help="A folder containing the training data of class images.",
|
150 |
-
)
|
151 |
-
parser.add_argument(
|
152 |
-
"--instance_prompt",
|
153 |
-
type=str,
|
154 |
-
default=None,
|
155 |
-
required=True,
|
156 |
-
help="The prompt with identifier specifying the instance",
|
157 |
-
)
|
158 |
-
parser.add_argument(
|
159 |
-
"--class_prompt",
|
160 |
-
type=str,
|
161 |
-
default=None,
|
162 |
-
help="The prompt to specify images in the same class as provided instance images.",
|
163 |
-
)
|
164 |
-
parser.add_argument(
|
165 |
-
"--validation_prompt",
|
166 |
-
type=str,
|
167 |
-
default=None,
|
168 |
-
help="A prompt that is used during validation to verify that the model is learning.",
|
169 |
-
)
|
170 |
-
parser.add_argument(
|
171 |
-
"--num_validation_images",
|
172 |
-
type=int,
|
173 |
-
default=4,
|
174 |
-
help="Number of images that should be generated during validation with `validation_prompt`.",
|
175 |
-
)
|
176 |
-
parser.add_argument(
|
177 |
-
"--validation_epochs",
|
178 |
-
type=int,
|
179 |
-
default=50,
|
180 |
-
help=(
|
181 |
-
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
182 |
-
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
183 |
-
),
|
184 |
-
)
|
185 |
-
parser.add_argument(
|
186 |
-
"--with_prior_preservation",
|
187 |
-
default=False,
|
188 |
-
action="store_true",
|
189 |
-
help="Flag to add prior preservation loss.",
|
190 |
-
)
|
191 |
-
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
192 |
-
parser.add_argument(
|
193 |
-
"--num_class_images",
|
194 |
-
type=int,
|
195 |
-
default=100,
|
196 |
-
help=(
|
197 |
-
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
198 |
-
" class_data_dir, additional images will be sampled with class_prompt."
|
199 |
-
),
|
200 |
-
)
|
201 |
-
parser.add_argument(
|
202 |
-
"--output_dir",
|
203 |
-
type=str,
|
204 |
-
default="lora-dreambooth-model",
|
205 |
-
help="The output directory where the model predictions and checkpoints will be written.",
|
206 |
-
)
|
207 |
-
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
208 |
-
parser.add_argument(
|
209 |
-
"--resolution",
|
210 |
-
type=int,
|
211 |
-
default=512,
|
212 |
-
help=(
|
213 |
-
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
214 |
-
" resolution"
|
215 |
-
),
|
216 |
-
)
|
217 |
-
parser.add_argument(
|
218 |
-
"--center_crop",
|
219 |
-
default=False,
|
220 |
-
action="store_true",
|
221 |
-
help=(
|
222 |
-
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
223 |
-
" cropped. The images will be resized to the resolution first before cropping."
|
224 |
-
),
|
225 |
-
)
|
226 |
-
parser.add_argument(
|
227 |
-
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
228 |
-
)
|
229 |
-
parser.add_argument(
|
230 |
-
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
231 |
-
)
|
232 |
-
parser.add_argument("--num_train_epochs", type=int, default=1)
|
233 |
-
parser.add_argument(
|
234 |
-
"--max_train_steps",
|
235 |
-
type=int,
|
236 |
-
default=None,
|
237 |
-
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
238 |
-
)
|
239 |
-
parser.add_argument(
|
240 |
-
"--checkpointing_steps",
|
241 |
-
type=int,
|
242 |
-
default=500,
|
243 |
-
help=(
|
244 |
-
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
245 |
-
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
246 |
-
" training using `--resume_from_checkpoint`."
|
247 |
-
),
|
248 |
-
)
|
249 |
-
parser.add_argument(
|
250 |
-
"--resume_from_checkpoint",
|
251 |
-
type=str,
|
252 |
-
default=None,
|
253 |
-
help=(
|
254 |
-
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
255 |
-
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
256 |
-
),
|
257 |
-
)
|
258 |
-
parser.add_argument(
|
259 |
-
"--gradient_accumulation_steps",
|
260 |
-
type=int,
|
261 |
-
default=1,
|
262 |
-
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
263 |
-
)
|
264 |
-
parser.add_argument(
|
265 |
-
"--gradient_checkpointing",
|
266 |
-
action="store_true",
|
267 |
-
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
268 |
-
)
|
269 |
-
parser.add_argument(
|
270 |
-
"--learning_rate",
|
271 |
-
type=float,
|
272 |
-
default=5e-4,
|
273 |
-
help="Initial learning rate (after the potential warmup period) to use.",
|
274 |
-
)
|
275 |
-
parser.add_argument(
|
276 |
-
"--scale_lr",
|
277 |
-
action="store_true",
|
278 |
-
default=False,
|
279 |
-
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
280 |
-
)
|
281 |
-
parser.add_argument(
|
282 |
-
"--lr_scheduler",
|
283 |
-
type=str,
|
284 |
-
default="constant",
|
285 |
-
help=(
|
286 |
-
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
287 |
-
' "constant", "constant_with_warmup"]'
|
288 |
-
),
|
289 |
-
)
|
290 |
-
parser.add_argument(
|
291 |
-
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
292 |
-
)
|
293 |
-
parser.add_argument(
|
294 |
-
"--lr_num_cycles",
|
295 |
-
type=int,
|
296 |
-
default=1,
|
297 |
-
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
298 |
-
)
|
299 |
-
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
300 |
-
parser.add_argument(
|
301 |
-
"--dataloader_num_workers",
|
302 |
-
type=int,
|
303 |
-
default=0,
|
304 |
-
help=(
|
305 |
-
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
306 |
-
),
|
307 |
-
)
|
308 |
-
parser.add_argument(
|
309 |
-
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
310 |
-
)
|
311 |
-
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
312 |
-
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
313 |
-
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
314 |
-
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
315 |
-
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
316 |
-
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
317 |
-
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
318 |
-
parser.add_argument(
|
319 |
-
"--hub_model_id",
|
320 |
-
type=str,
|
321 |
-
default=None,
|
322 |
-
help="The name of the repository to keep in sync with the local `output_dir`.",
|
323 |
-
)
|
324 |
-
parser.add_argument(
|
325 |
-
"--logging_dir",
|
326 |
-
type=str,
|
327 |
-
default="logs",
|
328 |
-
help=(
|
329 |
-
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
330 |
-
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
331 |
-
),
|
332 |
-
)
|
333 |
-
parser.add_argument(
|
334 |
-
"--allow_tf32",
|
335 |
-
action="store_true",
|
336 |
-
help=(
|
337 |
-
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
338 |
-
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
339 |
-
),
|
340 |
-
)
|
341 |
-
parser.add_argument(
|
342 |
-
"--report_to",
|
343 |
-
type=str,
|
344 |
-
default="tensorboard",
|
345 |
-
help=(
|
346 |
-
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
347 |
-
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
348 |
-
),
|
349 |
-
)
|
350 |
-
parser.add_argument(
|
351 |
-
"--mixed_precision",
|
352 |
-
type=str,
|
353 |
-
default=None,
|
354 |
-
choices=["no", "fp16", "bf16"],
|
355 |
-
help=(
|
356 |
-
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
357 |
-
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
358 |
-
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
359 |
-
),
|
360 |
-
)
|
361 |
-
parser.add_argument(
|
362 |
-
"--prior_generation_precision",
|
363 |
-
type=str,
|
364 |
-
default=None,
|
365 |
-
choices=["no", "fp32", "fp16", "bf16"],
|
366 |
-
help=(
|
367 |
-
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
368 |
-
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
369 |
-
),
|
370 |
-
)
|
371 |
-
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
372 |
-
parser.add_argument(
|
373 |
-
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
374 |
-
)
|
375 |
-
|
376 |
-
if input_args is not None:
|
377 |
-
args = parser.parse_args(input_args)
|
378 |
-
else:
|
379 |
-
args = parser.parse_args()
|
380 |
-
|
381 |
-
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
382 |
-
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
383 |
-
args.local_rank = env_local_rank
|
384 |
-
|
385 |
-
if args.with_prior_preservation:
|
386 |
-
if args.class_data_dir is None:
|
387 |
-
raise ValueError("You must specify a data directory for class images.")
|
388 |
-
if args.class_prompt is None:
|
389 |
-
raise ValueError("You must specify prompt for class images.")
|
390 |
-
else:
|
391 |
-
# logger is not available yet
|
392 |
-
if args.class_data_dir is not None:
|
393 |
-
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
394 |
-
if args.class_prompt is not None:
|
395 |
-
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
396 |
-
|
397 |
-
return args
|
398 |
-
|
399 |
-
|
400 |
-
class DreamBoothDataset(Dataset):
|
401 |
-
"""
|
402 |
-
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
403 |
-
It pre-processes the images and the tokenizes prompts.
|
404 |
-
"""
|
405 |
-
|
406 |
-
def __init__(
|
407 |
-
self,
|
408 |
-
instance_data_root,
|
409 |
-
instance_prompt,
|
410 |
-
tokenizer,
|
411 |
-
class_data_root=None,
|
412 |
-
class_prompt=None,
|
413 |
-
size=512,
|
414 |
-
center_crop=False,
|
415 |
-
):
|
416 |
-
self.size = size
|
417 |
-
self.center_crop = center_crop
|
418 |
-
self.tokenizer = tokenizer
|
419 |
-
|
420 |
-
self.instance_data_root = Path(instance_data_root)
|
421 |
-
if not self.instance_data_root.exists():
|
422 |
-
raise ValueError("Instance images root doesn't exists.")
|
423 |
-
|
424 |
-
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
425 |
-
self.num_instance_images = len(self.instance_images_path)
|
426 |
-
self.instance_prompt = instance_prompt
|
427 |
-
self._length = self.num_instance_images
|
428 |
-
|
429 |
-
if class_data_root is not None:
|
430 |
-
self.class_data_root = Path(class_data_root)
|
431 |
-
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
432 |
-
self.class_images_path = list(self.class_data_root.iterdir())
|
433 |
-
self.num_class_images = len(self.class_images_path)
|
434 |
-
self._length = max(self.num_class_images, self.num_instance_images)
|
435 |
-
self.class_prompt = class_prompt
|
436 |
-
else:
|
437 |
-
self.class_data_root = None
|
438 |
-
|
439 |
-
self.image_transforms = transforms.Compose(
|
440 |
-
[
|
441 |
-
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
442 |
-
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
443 |
-
transforms.ToTensor(),
|
444 |
-
transforms.Normalize([0.5], [0.5]),
|
445 |
-
]
|
446 |
-
)
|
447 |
-
|
448 |
-
def __len__(self):
|
449 |
-
return self._length
|
450 |
-
|
451 |
-
def __getitem__(self, index):
|
452 |
-
example = {}
|
453 |
-
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
454 |
-
if not instance_image.mode == "RGB":
|
455 |
-
instance_image = instance_image.convert("RGB")
|
456 |
-
example["instance_images"] = self.image_transforms(instance_image)
|
457 |
-
example["instance_prompt_ids"] = self.tokenizer(
|
458 |
-
self.instance_prompt,
|
459 |
-
truncation=True,
|
460 |
-
padding="max_length",
|
461 |
-
max_length=self.tokenizer.model_max_length,
|
462 |
-
return_tensors="pt",
|
463 |
-
).input_ids
|
464 |
-
|
465 |
-
if self.class_data_root:
|
466 |
-
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
467 |
-
if not class_image.mode == "RGB":
|
468 |
-
class_image = class_image.convert("RGB")
|
469 |
-
example["class_images"] = self.image_transforms(class_image)
|
470 |
-
example["class_prompt_ids"] = self.tokenizer(
|
471 |
-
self.class_prompt,
|
472 |
-
truncation=True,
|
473 |
-
padding="max_length",
|
474 |
-
max_length=self.tokenizer.model_max_length,
|
475 |
-
return_tensors="pt",
|
476 |
-
).input_ids
|
477 |
-
|
478 |
-
return example
|
479 |
-
|
480 |
-
|
481 |
-
def collate_fn(examples, with_prior_preservation=False):
|
482 |
-
input_ids = [example["instance_prompt_ids"] for example in examples]
|
483 |
-
pixel_values = [example["instance_images"] for example in examples]
|
484 |
-
|
485 |
-
# Concat class and instance examples for prior preservation.
|
486 |
-
# We do this to avoid doing two forward passes.
|
487 |
-
if with_prior_preservation:
|
488 |
-
input_ids += [example["class_prompt_ids"] for example in examples]
|
489 |
-
pixel_values += [example["class_images"] for example in examples]
|
490 |
-
|
491 |
-
pixel_values = torch.stack(pixel_values)
|
492 |
-
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
493 |
-
|
494 |
-
input_ids = torch.cat(input_ids, dim=0)
|
495 |
-
|
496 |
-
batch = {
|
497 |
-
"input_ids": input_ids,
|
498 |
-
"pixel_values": pixel_values,
|
499 |
-
}
|
500 |
-
return batch
|
501 |
-
|
502 |
-
|
503 |
-
class PromptDataset(Dataset):
|
504 |
-
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
505 |
-
|
506 |
-
def __init__(self, prompt, num_samples):
|
507 |
-
self.prompt = prompt
|
508 |
-
self.num_samples = num_samples
|
509 |
-
|
510 |
-
def __len__(self):
|
511 |
-
return self.num_samples
|
512 |
-
|
513 |
-
def __getitem__(self, index):
|
514 |
-
example = {}
|
515 |
-
example["prompt"] = self.prompt
|
516 |
-
example["index"] = index
|
517 |
-
return example
|
518 |
-
|
519 |
-
|
520 |
-
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
521 |
-
if token is None:
|
522 |
-
token = HfFolder.get_token()
|
523 |
-
if organization is None:
|
524 |
-
username = whoami(token)["name"]
|
525 |
-
return f"{username}/{model_id}"
|
526 |
-
else:
|
527 |
-
return f"{organization}/{model_id}"
|
528 |
-
|
529 |
-
|
530 |
-
def main(args):
|
531 |
-
logging_dir = Path(args.output_dir, args.logging_dir)
|
532 |
-
|
533 |
-
accelerator = Accelerator(
|
534 |
-
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
535 |
-
mixed_precision=args.mixed_precision,
|
536 |
-
log_with=args.report_to,
|
537 |
-
logging_dir=logging_dir,
|
538 |
-
)
|
539 |
-
|
540 |
-
if args.report_to == "wandb":
|
541 |
-
if not is_wandb_available():
|
542 |
-
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
543 |
-
import wandb
|
544 |
-
|
545 |
-
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
546 |
-
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
547 |
-
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
548 |
-
# Make one log on every process with the configuration for debugging.
|
549 |
-
logging.basicConfig(
|
550 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
551 |
-
datefmt="%m/%d/%Y %H:%M:%S",
|
552 |
-
level=logging.INFO,
|
553 |
-
)
|
554 |
-
logger.info(accelerator.state, main_process_only=False)
|
555 |
-
if accelerator.is_local_main_process:
|
556 |
-
datasets.utils.logging.set_verbosity_warning()
|
557 |
-
transformers.utils.logging.set_verbosity_warning()
|
558 |
-
diffusers.utils.logging.set_verbosity_info()
|
559 |
-
else:
|
560 |
-
datasets.utils.logging.set_verbosity_error()
|
561 |
-
transformers.utils.logging.set_verbosity_error()
|
562 |
-
diffusers.utils.logging.set_verbosity_error()
|
563 |
-
|
564 |
-
# If passed along, set the training seed now.
|
565 |
-
if args.seed is not None:
|
566 |
-
set_seed(args.seed)
|
567 |
-
|
568 |
-
# Generate class images if prior preservation is enabled.
|
569 |
-
if args.with_prior_preservation:
|
570 |
-
class_images_dir = Path(args.class_data_dir)
|
571 |
-
if not class_images_dir.exists():
|
572 |
-
class_images_dir.mkdir(parents=True)
|
573 |
-
cur_class_images = len(list(class_images_dir.iterdir()))
|
574 |
-
|
575 |
-
if cur_class_images < args.num_class_images:
|
576 |
-
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
577 |
-
if args.prior_generation_precision == "fp32":
|
578 |
-
torch_dtype = torch.float32
|
579 |
-
elif args.prior_generation_precision == "fp16":
|
580 |
-
torch_dtype = torch.float16
|
581 |
-
elif args.prior_generation_precision == "bf16":
|
582 |
-
torch_dtype = torch.bfloat16
|
583 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
584 |
-
args.pretrained_model_name_or_path,
|
585 |
-
torch_dtype=torch_dtype,
|
586 |
-
safety_checker=None,
|
587 |
-
revision=args.revision,
|
588 |
-
)
|
589 |
-
pipeline.set_progress_bar_config(disable=True)
|
590 |
-
|
591 |
-
num_new_images = args.num_class_images - cur_class_images
|
592 |
-
logger.info(f"Number of class images to sample: {num_new_images}.")
|
593 |
-
|
594 |
-
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
595 |
-
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
596 |
-
|
597 |
-
sample_dataloader = accelerator.prepare(sample_dataloader)
|
598 |
-
pipeline.to(accelerator.device)
|
599 |
-
|
600 |
-
for example in tqdm(
|
601 |
-
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
602 |
-
):
|
603 |
-
images = pipeline(example["prompt"]).images
|
604 |
-
|
605 |
-
for i, image in enumerate(images):
|
606 |
-
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
607 |
-
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
608 |
-
image.save(image_filename)
|
609 |
-
|
610 |
-
del pipeline
|
611 |
-
if torch.cuda.is_available():
|
612 |
-
torch.cuda.empty_cache()
|
613 |
-
|
614 |
-
# Handle the repository creation
|
615 |
-
if accelerator.is_main_process:
|
616 |
-
if args.push_to_hub:
|
617 |
-
if args.hub_model_id is None:
|
618 |
-
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
619 |
-
else:
|
620 |
-
repo_name = args.hub_model_id
|
621 |
-
|
622 |
-
create_repo(repo_name, exist_ok=True, token=args.hub_token)
|
623 |
-
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
|
624 |
-
|
625 |
-
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
626 |
-
if "step_*" not in gitignore:
|
627 |
-
gitignore.write("step_*\n")
|
628 |
-
if "epoch_*" not in gitignore:
|
629 |
-
gitignore.write("epoch_*\n")
|
630 |
-
elif args.output_dir is not None:
|
631 |
-
os.makedirs(args.output_dir, exist_ok=True)
|
632 |
-
|
633 |
-
# Load the tokenizer
|
634 |
-
if args.tokenizer_name:
|
635 |
-
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
636 |
-
elif args.pretrained_model_name_or_path:
|
637 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
638 |
-
args.pretrained_model_name_or_path,
|
639 |
-
subfolder="tokenizer",
|
640 |
-
revision=args.revision,
|
641 |
-
use_fast=False,
|
642 |
-
)
|
643 |
-
|
644 |
-
# import correct text encoder class
|
645 |
-
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
646 |
-
|
647 |
-
# Load scheduler and models
|
648 |
-
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
649 |
-
text_encoder = text_encoder_cls.from_pretrained(
|
650 |
-
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
651 |
-
)
|
652 |
-
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
653 |
-
unet = UNet2DConditionModel.from_pretrained(
|
654 |
-
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
655 |
-
)
|
656 |
-
|
657 |
-
# We only train the additional adapter LoRA layers
|
658 |
-
vae.requires_grad_(False)
|
659 |
-
text_encoder.requires_grad_(False)
|
660 |
-
unet.requires_grad_(False)
|
661 |
-
|
662 |
-
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
663 |
-
# as these models are only used for inference, keeping weights in full precision is not required.
|
664 |
-
weight_dtype = torch.float32
|
665 |
-
if accelerator.mixed_precision == "fp16":
|
666 |
-
weight_dtype = torch.float16
|
667 |
-
elif accelerator.mixed_precision == "bf16":
|
668 |
-
weight_dtype = torch.bfloat16
|
669 |
-
|
670 |
-
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
671 |
-
unet.to(accelerator.device, dtype=weight_dtype)
|
672 |
-
vae.to(accelerator.device, dtype=weight_dtype)
|
673 |
-
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
674 |
-
|
675 |
-
if args.enable_xformers_memory_efficient_attention:
|
676 |
-
if is_xformers_available():
|
677 |
-
unet.enable_xformers_memory_efficient_attention()
|
678 |
-
else:
|
679 |
-
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
680 |
-
|
681 |
-
# now we will add new LoRA weights to the attention layers
|
682 |
-
# It's important to realize here how many attention weights will be added and of which sizes
|
683 |
-
# The sizes of the attention layers consist only of two different variables:
|
684 |
-
# 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
|
685 |
-
# 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.
|
686 |
-
|
687 |
-
# Let's first see how many attention processors we will have to set.
|
688 |
-
# For Stable Diffusion, it should be equal to:
|
689 |
-
# - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
|
690 |
-
# - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
|
691 |
-
# - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
|
692 |
-
# => 32 layers
|
693 |
-
|
694 |
-
# Set correct lora layers
|
695 |
-
lora_attn_procs = {}
|
696 |
-
for name in unet.attn_processors.keys():
|
697 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
698 |
-
if name.startswith("mid_block"):
|
699 |
-
hidden_size = unet.config.block_out_channels[-1]
|
700 |
-
elif name.startswith("up_blocks"):
|
701 |
-
block_id = int(name[len("up_blocks.")])
|
702 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
703 |
-
elif name.startswith("down_blocks"):
|
704 |
-
block_id = int(name[len("down_blocks.")])
|
705 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
706 |
-
|
707 |
-
lora_attn_procs[name] = LoRACrossAttnProcessor(
|
708 |
-
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
|
709 |
-
)
|
710 |
-
|
711 |
-
unet.set_attn_processor(lora_attn_procs)
|
712 |
-
lora_layers = AttnProcsLayers(unet.attn_processors)
|
713 |
-
|
714 |
-
accelerator.register_for_checkpointing(lora_layers)
|
715 |
-
|
716 |
-
if args.scale_lr:
|
717 |
-
args.learning_rate = (
|
718 |
-
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
719 |
-
)
|
720 |
-
|
721 |
-
# Enable TF32 for faster training on Ampere GPUs,
|
722 |
-
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
723 |
-
if args.allow_tf32:
|
724 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
725 |
-
|
726 |
-
if args.scale_lr:
|
727 |
-
args.learning_rate = (
|
728 |
-
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
729 |
-
)
|
730 |
-
|
731 |
-
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
732 |
-
if args.use_8bit_adam:
|
733 |
-
try:
|
734 |
-
import bitsandbytes as bnb
|
735 |
-
except ImportError:
|
736 |
-
raise ImportError(
|
737 |
-
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
738 |
-
)
|
739 |
-
|
740 |
-
optimizer_class = bnb.optim.AdamW8bit
|
741 |
-
else:
|
742 |
-
optimizer_class = torch.optim.AdamW
|
743 |
-
|
744 |
-
# Optimizer creation
|
745 |
-
optimizer = optimizer_class(
|
746 |
-
lora_layers.parameters(),
|
747 |
-
lr=args.learning_rate,
|
748 |
-
betas=(args.adam_beta1, args.adam_beta2),
|
749 |
-
weight_decay=args.adam_weight_decay,
|
750 |
-
eps=args.adam_epsilon,
|
751 |
-
)
|
752 |
-
|
753 |
-
# Dataset and DataLoaders creation:
|
754 |
-
train_dataset = DreamBoothDataset(
|
755 |
-
instance_data_root=args.instance_data_dir,
|
756 |
-
instance_prompt=args.instance_prompt,
|
757 |
-
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
758 |
-
class_prompt=args.class_prompt,
|
759 |
-
tokenizer=tokenizer,
|
760 |
-
size=args.resolution,
|
761 |
-
center_crop=args.center_crop,
|
762 |
-
)
|
763 |
-
|
764 |
-
train_dataloader = torch.utils.data.DataLoader(
|
765 |
-
train_dataset,
|
766 |
-
batch_size=args.train_batch_size,
|
767 |
-
shuffle=True,
|
768 |
-
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
769 |
-
num_workers=args.dataloader_num_workers,
|
770 |
-
)
|
771 |
-
|
772 |
-
# Scheduler and math around the number of training steps.
|
773 |
-
overrode_max_train_steps = False
|
774 |
-
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
775 |
-
if args.max_train_steps is None:
|
776 |
-
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
777 |
-
overrode_max_train_steps = True
|
778 |
-
|
779 |
-
lr_scheduler = get_scheduler(
|
780 |
-
args.lr_scheduler,
|
781 |
-
optimizer=optimizer,
|
782 |
-
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
783 |
-
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
784 |
-
num_cycles=args.lr_num_cycles,
|
785 |
-
power=args.lr_power,
|
786 |
-
)
|
787 |
-
|
788 |
-
# Prepare everything with our `accelerator`.
|
789 |
-
lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
790 |
-
lora_layers, optimizer, train_dataloader, lr_scheduler
|
791 |
-
)
|
792 |
-
|
793 |
-
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
794 |
-
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
795 |
-
if overrode_max_train_steps:
|
796 |
-
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
797 |
-
# Afterwards we recalculate our number of training epochs
|
798 |
-
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
799 |
-
|
800 |
-
# We need to initialize the trackers we use, and also store our configuration.
|
801 |
-
# The trackers initializes automatically on the main process.
|
802 |
-
if accelerator.is_main_process:
|
803 |
-
accelerator.init_trackers("dreambooth-lora", config=vars(args))
|
804 |
-
|
805 |
-
# Train!
|
806 |
-
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
807 |
-
|
808 |
-
logger.info("***** Running training *****")
|
809 |
-
logger.info(f" Num examples = {len(train_dataset)}")
|
810 |
-
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
811 |
-
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
812 |
-
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
813 |
-
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
814 |
-
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
815 |
-
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
816 |
-
global_step = 0
|
817 |
-
first_epoch = 0
|
818 |
-
|
819 |
-
# Potentially load in the weights and states from a previous save
|
820 |
-
if args.resume_from_checkpoint:
|
821 |
-
if args.resume_from_checkpoint != "latest":
|
822 |
-
path = os.path.basename(args.resume_from_checkpoint)
|
823 |
-
else:
|
824 |
-
# Get the mos recent checkpoint
|
825 |
-
dirs = os.listdir(args.output_dir)
|
826 |
-
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
827 |
-
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
828 |
-
path = dirs[-1] if len(dirs) > 0 else None
|
829 |
-
|
830 |
-
if path is None:
|
831 |
-
accelerator.print(
|
832 |
-
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
833 |
-
)
|
834 |
-
args.resume_from_checkpoint = None
|
835 |
-
else:
|
836 |
-
accelerator.print(f"Resuming from checkpoint {path}")
|
837 |
-
accelerator.load_state(os.path.join(args.output_dir, path))
|
838 |
-
global_step = int(path.split("-")[1])
|
839 |
-
|
840 |
-
resume_global_step = global_step * args.gradient_accumulation_steps
|
841 |
-
first_epoch = global_step // num_update_steps_per_epoch
|
842 |
-
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
843 |
-
|
844 |
-
# Only show the progress bar once on each machine.
|
845 |
-
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
846 |
-
progress_bar.set_description("Steps")
|
847 |
-
|
848 |
-
for epoch in range(first_epoch, args.num_train_epochs):
|
849 |
-
unet.train()
|
850 |
-
for step, batch in enumerate(train_dataloader):
|
851 |
-
# Skip steps until we reach the resumed step
|
852 |
-
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
853 |
-
if step % args.gradient_accumulation_steps == 0:
|
854 |
-
progress_bar.update(1)
|
855 |
-
continue
|
856 |
-
|
857 |
-
with accelerator.accumulate(unet):
|
858 |
-
# Convert images to latent space
|
859 |
-
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
860 |
-
latents = latents * 0.18215
|
861 |
-
|
862 |
-
# Sample noise that we'll add to the latents
|
863 |
-
noise = torch.randn_like(latents)
|
864 |
-
bsz = latents.shape[0]
|
865 |
-
# Sample a random timestep for each image
|
866 |
-
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
867 |
-
timesteps = timesteps.long()
|
868 |
-
|
869 |
-
# Add noise to the latents according to the noise magnitude at each timestep
|
870 |
-
# (this is the forward diffusion process)
|
871 |
-
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
872 |
-
|
873 |
-
# Get the text embedding for conditioning
|
874 |
-
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
875 |
-
|
876 |
-
# Predict the noise residual
|
877 |
-
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
878 |
-
|
879 |
-
# Get the target for loss depending on the prediction type
|
880 |
-
if noise_scheduler.config.prediction_type == "epsilon":
|
881 |
-
target = noise
|
882 |
-
elif noise_scheduler.config.prediction_type == "v_prediction":
|
883 |
-
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
884 |
-
else:
|
885 |
-
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
886 |
-
|
887 |
-
if args.with_prior_preservation:
|
888 |
-
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
889 |
-
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
890 |
-
target, target_prior = torch.chunk(target, 2, dim=0)
|
891 |
-
|
892 |
-
# Compute instance loss
|
893 |
-
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
894 |
-
|
895 |
-
# Compute prior loss
|
896 |
-
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
897 |
-
|
898 |
-
# Add the prior loss to the instance loss.
|
899 |
-
loss = loss + args.prior_loss_weight * prior_loss
|
900 |
-
else:
|
901 |
-
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
902 |
-
|
903 |
-
accelerator.backward(loss)
|
904 |
-
if accelerator.sync_gradients:
|
905 |
-
params_to_clip = lora_layers.parameters()
|
906 |
-
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
907 |
-
optimizer.step()
|
908 |
-
lr_scheduler.step()
|
909 |
-
optimizer.zero_grad()
|
910 |
-
|
911 |
-
# Checks if the accelerator has performed an optimization step behind the scenes
|
912 |
-
if accelerator.sync_gradients:
|
913 |
-
progress_bar.update(1)
|
914 |
-
global_step += 1
|
915 |
-
|
916 |
-
if global_step % args.checkpointing_steps == 0:
|
917 |
-
if accelerator.is_main_process:
|
918 |
-
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
919 |
-
accelerator.save_state(save_path)
|
920 |
-
logger.info(f"Saved state to {save_path}")
|
921 |
-
|
922 |
-
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
923 |
-
progress_bar.set_postfix(**logs)
|
924 |
-
accelerator.log(logs, step=global_step)
|
925 |
-
|
926 |
-
if global_step >= args.max_train_steps:
|
927 |
-
break
|
928 |
-
|
929 |
-
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
930 |
-
logger.info(
|
931 |
-
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
932 |
-
f" {args.validation_prompt}."
|
933 |
-
)
|
934 |
-
# create pipeline
|
935 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
936 |
-
args.pretrained_model_name_or_path,
|
937 |
-
unet=accelerator.unwrap_model(unet),
|
938 |
-
text_encoder=accelerator.unwrap_model(text_encoder),
|
939 |
-
revision=args.revision,
|
940 |
-
torch_dtype=weight_dtype,
|
941 |
-
)
|
942 |
-
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
943 |
-
pipeline = pipeline.to(accelerator.device)
|
944 |
-
pipeline.set_progress_bar_config(disable=True)
|
945 |
-
|
946 |
-
# run inference
|
947 |
-
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
948 |
-
prompt = args.num_validation_images * [args.validation_prompt]
|
949 |
-
images = pipeline(prompt, num_inference_steps=25, generator=generator).images
|
950 |
-
|
951 |
-
for tracker in accelerator.trackers:
|
952 |
-
if tracker.name == "tensorboard":
|
953 |
-
np_images = np.stack([np.asarray(img) for img in images])
|
954 |
-
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
955 |
-
if tracker.name == "wandb":
|
956 |
-
tracker.log(
|
957 |
-
{
|
958 |
-
"validation": [
|
959 |
-
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
960 |
-
for i, image in enumerate(images)
|
961 |
-
]
|
962 |
-
}
|
963 |
-
)
|
964 |
-
|
965 |
-
del pipeline
|
966 |
-
torch.cuda.empty_cache()
|
967 |
-
|
968 |
-
# Save the lora layers
|
969 |
-
accelerator.wait_for_everyone()
|
970 |
-
if accelerator.is_main_process:
|
971 |
-
unet = unet.to(torch.float32)
|
972 |
-
unet.save_attn_procs(args.output_dir)
|
973 |
-
|
974 |
-
# Final inference
|
975 |
-
# Load previous pipeline
|
976 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
977 |
-
args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype
|
978 |
-
)
|
979 |
-
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
980 |
-
pipeline = pipeline.to(accelerator.device)
|
981 |
-
|
982 |
-
# load attention processors
|
983 |
-
pipeline.unet.load_attn_procs(args.output_dir)
|
984 |
-
|
985 |
-
# run inference
|
986 |
-
if args.validation_prompt and args.num_validation_images > 0:
|
987 |
-
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
988 |
-
prompt = args.num_validation_images * [args.validation_prompt]
|
989 |
-
images = pipeline(prompt, num_inference_steps=25, generator=generator).images
|
990 |
-
|
991 |
-
test_image_dir = Path(args.output_dir) / 'test_images'
|
992 |
-
test_image_dir.mkdir()
|
993 |
-
for i, image in enumerate(images):
|
994 |
-
out_path = test_image_dir / f'image_{i}.png'
|
995 |
-
image.save(out_path)
|
996 |
-
|
997 |
-
for tracker in accelerator.trackers:
|
998 |
-
if tracker.name == "tensorboard":
|
999 |
-
np_images = np.stack([np.asarray(img) for img in images])
|
1000 |
-
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
|
1001 |
-
if tracker.name == "wandb":
|
1002 |
-
tracker.log(
|
1003 |
-
{
|
1004 |
-
"test": [
|
1005 |
-
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1006 |
-
for i, image in enumerate(images)
|
1007 |
-
]
|
1008 |
-
}
|
1009 |
-
)
|
1010 |
-
|
1011 |
-
if args.push_to_hub:
|
1012 |
-
save_model_card(
|
1013 |
-
repo_name,
|
1014 |
-
images=images,
|
1015 |
-
base_model=args.pretrained_model_name_or_path,
|
1016 |
-
prompt=args.instance_prompt,
|
1017 |
-
repo_folder=args.output_dir,
|
1018 |
-
)
|
1019 |
-
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
1020 |
-
|
1021 |
-
accelerator.end_training()
|
1022 |
-
|
1023 |
-
|
1024 |
-
if __name__ == "__main__":
|
1025 |
-
args = parse_args()
|
1026 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|