|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
|
|
import gradio as gr |
|
|
|
from constants import UploadTarget |
|
from inference import InferencePipeline |
|
from trainer import Trainer |
|
|
|
|
|
def create_training_demo(trainer: Trainer, |
|
pipe: InferencePipeline | None = None, |
|
disable_run_button: bool = False) -> gr.Blocks: |
|
def read_log() -> str: |
|
with open(trainer.log_file) as f: |
|
lines = f.readlines() |
|
return ''.join(lines[-10:]) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Box(): |
|
gr.Markdown('Training Data') |
|
training_video = gr.File(label='Training video') |
|
training_prompt = gr.Textbox( |
|
label='Training prompt', |
|
max_lines=1, |
|
placeholder='A man is surfing') |
|
gr.Markdown(''' |
|
- Upload a video and write a `Training Prompt` that describes the video. |
|
''') |
|
|
|
with gr.Column(): |
|
with gr.Box(): |
|
gr.Markdown('Training Parameters') |
|
with gr.Row(): |
|
base_model = gr.Text( |
|
label='Base Model', |
|
value='CompVis/stable-diffusion-v1-4', |
|
max_lines=1) |
|
resolution = gr.Dropdown(choices=['512', '768'], |
|
value='512', |
|
label='Resolution', |
|
visible=False) |
|
|
|
hf_token = gr.Text(label='Hugging Face Write Token', |
|
placeholder='', |
|
visible=os.getenv('HF_TOKEN') is None) |
|
with gr.Accordion('Advanced settings', open=False): |
|
num_training_steps = gr.Number( |
|
label='Number of Training Steps', |
|
value=300, |
|
precision=0) |
|
learning_rate = gr.Number(label='Learning Rate', |
|
value=0.000035) |
|
gradient_accumulation = gr.Number( |
|
label='Number of Gradient Accumulation', |
|
value=1, |
|
precision=0) |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=100000, |
|
step=1, |
|
randomize=True, |
|
value=0) |
|
fp16 = gr.Checkbox(label='FP16', value=True) |
|
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', |
|
value=False) |
|
checkpointing_steps = gr.Number( |
|
label='Checkpointing Steps', |
|
value=1000, |
|
precision=0) |
|
validation_epochs = gr.Number( |
|
label='Validation Epochs', value=100, precision=0) |
|
gr.Markdown(''' |
|
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library. |
|
- Expected time to train a model for 300 steps: ~20 minutes with T4 |
|
- You can check the training status by pressing the "Open logs" button if you are running this on your Space. |
|
''') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown('Output Model') |
|
output_model_name = gr.Text(label='Name of your model', |
|
placeholder='The surfer man', |
|
max_lines=1) |
|
validation_prompt = gr.Text( |
|
label='Validation Prompt', |
|
placeholder= |
|
'prompt to test the model, e.g: a dog is surfing') |
|
with gr.Column(): |
|
gr.Markdown('Upload Settings') |
|
with gr.Row(): |
|
upload_to_hub = gr.Checkbox(label='Upload model to Hub', |
|
value=True) |
|
use_private_repo = gr.Checkbox(label='Private', value=True) |
|
delete_existing_repo = gr.Checkbox( |
|
label='Delete existing repo of the same name', |
|
value=False) |
|
upload_to = gr.Radio( |
|
label='Upload to', |
|
choices=[_.value for _ in UploadTarget], |
|
value=UploadTarget.MODEL_LIBRARY.value) |
|
|
|
pause_space_after_training = gr.Checkbox( |
|
label='Pause this Space after training', |
|
value=False, |
|
interactive=bool(os.getenv('SPACE_ID')), |
|
visible=False) |
|
run_button = gr.Button('Start Training', |
|
interactive=not disable_run_button) |
|
|
|
with gr.Box(): |
|
gr.Text(label='Log', |
|
value=read_log, |
|
lines=10, |
|
max_lines=10, |
|
every=1) |
|
|
|
if pipe is not None: |
|
run_button.click(fn=pipe.clear) |
|
run_button.click(fn=trainer.run, |
|
inputs=[ |
|
training_video, |
|
training_prompt, |
|
output_model_name, |
|
delete_existing_repo, |
|
validation_prompt, |
|
base_model, |
|
resolution, |
|
num_training_steps, |
|
learning_rate, |
|
gradient_accumulation, |
|
seed, |
|
fp16, |
|
use_8bit_adam, |
|
checkpointing_steps, |
|
validation_epochs, |
|
upload_to_hub, |
|
use_private_repo, |
|
delete_existing_repo, |
|
upload_to, |
|
pause_space_after_training, |
|
hf_token, |
|
]) |
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
trainer = Trainer() |
|
demo = create_training_demo(trainer) |
|
demo.queue(api_open=False, max_size=1).launch() |
|
|