Tulitula commited on
Commit
75878f6
·
verified ·
1 Parent(s): b895f5b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +802 -0
app.py ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, io, math, json, traceback, warnings
2
+ warnings.filterwarnings("ignore")
3
+
4
+ from typing import List, Tuple, Dict, Optional
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ import matplotlib.pyplot as plt
9
+ from PIL import Image
10
+ import gradio as gr
11
+ import requests
12
+ import yfinance as yf
13
+
14
+ from sentence_transformers import SentenceTransformer, util as st_util
15
+
16
+ # =========================
17
+ # Config
18
+ # =========================
19
+ DATA_DIR = "data"
20
+ os.makedirs(DATA_DIR, exist_ok=True)
21
+
22
+ DEFAULT_LOOKBACK_YEARS = 5
23
+ MAX_TICKERS = 30
24
+ MARKET_TICKER = "VOO" # proxy for market portfolio
25
+ BILLS_TICKER = "BILLS" # synthetic cash / T-Bills bucket
26
+
27
+ EMBED_MODEL_NAME = "BAAI/bge-base-en-v1.5" # fully local, no API keys
28
+
29
+ POS_COLS = ["ticker", "amount_usd", "weight_exposure", "beta"]
30
+ SUG_COLS = ["ticker", "weight_%", "amount_$"]
31
+ EFF_COLS = ["asset", "weight_%", "amount_$"]
32
+
33
+ N_SYNTH = 1000 # synthetic dataset size
34
+ MMR_K = 40 # shortlist size before MMR
35
+ MMR_LAMBDA = 0.65 # similarity vs diversity tradeoff
36
+
37
+ DEBUG = True # if True, surface tracebacks in the UI summary when something fails
38
+
39
+ # ---------------- FRED mapping (risk-free source) ----------------
40
+ FRED_MAP = [
41
+ (1, "DGS1"),
42
+ (2, "DGS2"),
43
+ (3, "DGS3"),
44
+ (5, "DGS5"),
45
+ (7, "DGS7"),
46
+ (10, "DGS10"),
47
+ (20, "DGS20"),
48
+ (30, "DGS30"),
49
+ (100,"DGS30"),
50
+ ]
51
+
52
+ def fred_series_for_horizon(years: float) -> str:
53
+ y = max(1.0, min(100.0, float(years)))
54
+ for cutoff, code in FRED_MAP:
55
+ if y <= cutoff:
56
+ return code
57
+ return "DGS30"
58
+
59
+ def fetch_fred_yield_annual(code: str) -> float:
60
+ url = f"https://fred.stlouisfed.org/graph/fredgraph.csv?id={code}"
61
+ try:
62
+ r = requests.get(url, timeout=10)
63
+ r.raise_for_status()
64
+ df = pd.read_csv(io.StringIO(r.text))
65
+ s = pd.to_numeric(df.iloc[:, 1], errors="coerce").dropna()
66
+ return float(s.iloc[-1] / 100.0) if len(s) else 0.03
67
+ except Exception:
68
+ return 0.03
69
+
70
+ # =========================
71
+ # Data helpers
72
+ # =========================
73
+ def _to_cols_close(df: pd.DataFrame, tickers: List[str]) -> pd.DataFrame:
74
+ """
75
+ Coerce yfinance download to single-level columns of closes/adj closes.
76
+ Handles Series, single-level, and MultiIndex frames safely.
77
+ """
78
+ if df is None or df.empty:
79
+ return pd.DataFrame()
80
+
81
+ # If Series (one ticker)
82
+ if isinstance(df, pd.Series):
83
+ df = df.to_frame("Close")
84
+
85
+ # MultiIndex columns: (ticker, field)
86
+ if isinstance(df.columns, pd.MultiIndex):
87
+ fields = df.columns.get_level_values(1).unique().tolist()
88
+ field = "Adj Close" if "Adj Close" in fields else ("Close" if "Close" in fields else fields[0])
89
+ out = {}
90
+ for t in dict.fromkeys(tickers):
91
+ col = (t, field)
92
+ if col in df.columns:
93
+ out[t] = pd.to_numeric(df[col], errors="coerce")
94
+ return pd.DataFrame(out)
95
+
96
+ # Single-level columns: try common names
97
+ if "Adj Close" in df.columns:
98
+ col = pd.to_numeric(df["Adj Close"], errors="coerce")
99
+ col.name = tickers[0] if tickers else "SINGLE"
100
+ return col.to_frame()
101
+ if "Close" in df.columns:
102
+ col = pd.to_numeric(df["Close"], errors="coerce")
103
+ col.name = tickers[0] if tickers else "SINGLE"
104
+ return col.to_frame()
105
+
106
+ # Fallback to first numeric column
107
+ num_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
108
+ if num_cols:
109
+ col = pd.to_numeric(df[num_cols[0]], errors="coerce")
110
+ col.name = tickers[0] if tickers else "SINGLE"
111
+ return col.to_frame()
112
+
113
+ return pd.DataFrame()
114
+
115
+ def fetch_prices_monthly(tickers: List[str], years: int) -> pd.DataFrame:
116
+ tickers = [t for t in dict.fromkeys(tickers) if t]
117
+ if not tickers:
118
+ return pd.DataFrame()
119
+
120
+ start = (pd.Timestamp.today(tz="UTC") - pd.DateOffset(years=int(years), days=7)).date()
121
+ end = pd.Timestamp.today(tz="UTC").date()
122
+
123
+ df_raw = yf.download(
124
+ tickers, start=start, end=end,
125
+ interval="1mo", auto_adjust=True, progress=False, group_by="ticker",
126
+ threads=True,
127
+ )
128
+ df = _to_cols_close(df_raw, tickers)
129
+ if df.empty:
130
+ return df
131
+ df = df.dropna(how="all").fillna(method="ffill")
132
+ # Keep only requested columns if present
133
+ keep = [t for t in tickers if t in df.columns]
134
+ if not keep and df.shape[1] == 1:
135
+ # Single column; rename if needed
136
+ df.columns = [tickers[0]]
137
+ keep = [tickers[0]]
138
+ return df[keep] if keep else pd.DataFrame()
139
+
140
+ def monthly_returns(prices: pd.DataFrame) -> pd.DataFrame:
141
+ if prices is None or prices.empty:
142
+ return pd.DataFrame()
143
+ return prices.pct_change().dropna(how="all")
144
+
145
+ def validate_tickers(symbols: List[str], years: int) -> List[str]:
146
+ """Return subset of symbols that have monthly data."""
147
+ symbols = [s.strip().upper() for s in symbols if s and isinstance(s, str)]
148
+ if not symbols:
149
+ return []
150
+ base = [s for s in symbols if s != MARKET_TICKER]
151
+ px = fetch_prices_monthly(base + [MARKET_TICKER], years)
152
+ if px.empty:
153
+ return [s for s in symbols if s == MARKET_TICKER] # maybe only market survives
154
+ ok = [s for s in symbols if s in px.columns]
155
+ return ok
156
+
157
+ # =========================
158
+ # Moments & CAPM
159
+ # =========================
160
+ def annualize_mean(m): return np.asarray(m, dtype=float) * 12.0
161
+ def annualize_sigma(s): return np.asarray(s, dtype=float) * math.sqrt(12.0)
162
+
163
+ def get_aligned_monthly_returns(symbols: List[str], years: int) -> pd.DataFrame:
164
+ uniq = [c for c in dict.fromkeys(symbols)]
165
+ if MARKET_TICKER not in uniq:
166
+ uniq.append(MARKET_TICKER)
167
+ px = fetch_prices_monthly(uniq, years)
168
+ rets = monthly_returns(px)
169
+ if rets.empty:
170
+ return pd.DataFrame()
171
+ cols = [c for c in uniq if c in rets.columns]
172
+ R = rets[cols].dropna(how="any")
173
+ return R.loc[:, ~R.columns.duplicated()]
174
+
175
+ def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
176
+ R = get_aligned_monthly_returns(symbols + [MARKET_TICKER], years)
177
+ if R.empty or MARKET_TICKER not in R.columns or R.shape[0] < 3:
178
+ raise ValueError("Not enough aligned data to estimate moments.")
179
+ rf_m = rf_ann / 12.0
180
+
181
+ m = R[MARKET_TICKER]
182
+ if isinstance(m, pd.DataFrame):
183
+ m = m.iloc[:, 0].squeeze()
184
+
185
+ mu_m_ann = float(annualize_mean(m.mean()))
186
+ sigma_m_ann = float(annualize_sigma(m.std(ddof=1)))
187
+ erp_ann = float(mu_m_ann - rf_ann)
188
+
189
+ ex_m = m - rf_m
190
+ var_m = float(np.var(ex_m.values, ddof=1))
191
+ var_m = max(var_m, 1e-9)
192
+
193
+ betas: Dict[str, float] = {}
194
+ for s in [c for c in R.columns if c != MARKET_TICKER]:
195
+ ex_s = R[s] - rf_m
196
+ cov_sm = float(np.cov(ex_s.values, ex_m.values, ddof=1)[0, 1])
197
+ betas[s] = cov_sm / var_m
198
+ betas[MARKET_TICKER] = 1.0
199
+
200
+ asset_cols = [c for c in R.columns if c != MARKET_TICKER]
201
+ cov_m = np.cov(R[asset_cols].values.T, ddof=1) if asset_cols else np.zeros((0, 0))
202
+ covA = pd.DataFrame(cov_m * 12.0, index=asset_cols, columns=asset_cols)
203
+
204
+ return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
205
+
206
+ def capm_er(beta: float, rf_ann: float, erp_ann: float) -> float:
207
+ return float(rf_ann + beta * erp_ann)
208
+
209
+ def portfolio_stats(weights: Dict[str, float],
210
+ cov_ann: pd.DataFrame,
211
+ betas: Dict[str, float],
212
+ rf_ann: float,
213
+ erp_ann: float) -> Tuple[float, float, float]:
214
+ tickers = list(weights.keys())
215
+ if not tickers:
216
+ return 0.0, rf_ann, 0.0
217
+ w = np.array([weights[t] for t in tickers], dtype=float)
218
+ gross = float(np.sum(np.abs(w)))
219
+ if gross <= 1e-12:
220
+ return 0.0, rf_ann, 0.0
221
+ w_expo = w / gross
222
+ beta_p = float(np.dot([betas.get(t, 0.0) for t in tickers], w_expo))
223
+ er_capm = capm_er(beta_p, rf_ann, erp_ann)
224
+ cov = cov_ann.reindex(index=tickers, columns=tickers).fillna(0.0).to_numpy()
225
+ sigma_p = math.sqrt(max(float(w_expo.T @ cov @ w_expo), 0.0))
226
+ return beta_p, er_capm, sigma_p
227
+
228
+ # =========================
229
+ # Efficient (CML) alternatives
230
+ # =========================
231
+ def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
232
+ if sigma_mkt <= 1e-12:
233
+ return 0.0, 1.0, rf_ann
234
+ a = sigma_target / sigma_mkt
235
+ return a, 1.0 - a, rf_ann + a * erp_ann
236
+
237
+ def efficient_same_return(mu_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
238
+ if abs(erp_ann) <= 1e-12:
239
+ return 0.0, 1.0, 0.0
240
+ a = (mu_target - rf_ann) / erp_ann
241
+ return a, 1.0 - a, abs(a) * sigma_mkt
242
+
243
+ # =========================
244
+ # Plot
245
+ # =========================
246
+ def _pct_arr(x):
247
+ return np.asarray(x, dtype=float) * 100.0
248
+
249
+ def plot_cml(rf_ann, erp_ann, sigma_mkt,
250
+ pt_sigma_hist, pt_mu_capm,
251
+ same_sigma_sigma, same_sigma_mu,
252
+ same_mu_sigma, same_mu_mu) -> Image.Image:
253
+ fig = plt.figure(figsize=(6.6, 4.4), dpi=130)
254
+
255
+ xmax = max(0.3, sigma_mkt * 2.0, pt_sigma_hist * 1.4, same_mu_sigma * 1.4, same_sigma_sigma * 1.4)
256
+ xs = np.linspace(0, xmax, 160)
257
+ slope = erp_ann / max(sigma_mkt, 1e-12)
258
+ cml = rf_ann + slope * xs
259
+
260
+ plt.plot(_pct_arr(xs), _pct_arr(cml), label="CML via VOO", linewidth=1.8)
261
+ plt.scatter([0.0], [_pct_arr(rf_ann)], label="Risk-free", zorder=5)
262
+ plt.scatter([_pct_arr(sigma_mkt)], [_pct_arr(rf_ann + erp_ann)], label="Market (VOO)", zorder=5)
263
+ plt.scatter([_pct_arr(pt_sigma_hist)], [_pct_arr(pt_mu_capm)], label="Your portfolio (CAPM)", zorder=6)
264
+ plt.scatter([_pct_arr(same_sigma_sigma)], [_pct_arr(same_sigma_mu)], label="Efficient: same σ", zorder=5)
265
+ plt.scatter([_pct_arr(same_mu_sigma)], [_pct_arr(same_mu_mu)], label="Efficient: same μ", zorder=5)
266
+
267
+ # Guides
268
+ plt.plot([_pct_arr(pt_sigma_hist), _pct_arr(same_sigma_sigma)],
269
+ [_pct_arr(pt_mu_capm), _pct_arr(same_sigma_mu)],
270
+ ls="--", lw=1.1, alpha=0.7, color="gray")
271
+ plt.plot([_pct_arr(pt_sigma_hist), _pct_arr(same_mu_sigma)],
272
+ [_pct_arr(pt_mu_capm), _pct_arr(same_mu_mu)],
273
+ ls="--", lw=1.1, alpha=0.7, color="gray")
274
+
275
+ plt.xlabel("σ (annual, %)")
276
+ plt.ylabel("E[return] (annual, %)")
277
+ plt.legend(loc="best", fontsize=8)
278
+ plt.tight_layout()
279
+
280
+ buf = io.BytesIO()
281
+ plt.savefig(buf, format="png")
282
+ plt.close(fig)
283
+ buf.seek(0)
284
+ return Image.open(buf)
285
+
286
+ # =========================
287
+ # Synthetic dataset (for recommendations)
288
+ # =========================
289
+ def dirichlet_signed(k, rng):
290
+ signs = rng.choice([-1.0, 1.0], size=k, p=[0.25, 0.75])
291
+ raw = rng.dirichlet(np.ones(k))
292
+ gross = 1.0 + float(rng.gamma(2.0, 0.5))
293
+ return gross * signs * raw
294
+
295
+ def build_synth_dataset(universe: List[str],
296
+ cov_ann: pd.DataFrame,
297
+ betas: Dict[str, float],
298
+ rf_ann: float, erp_ann: float,
299
+ n_rows: int = N_SYNTH,
300
+ seed: int = 123) -> pd.DataFrame:
301
+ rng = np.random.default_rng(seed)
302
+ U = [u for u in universe if u != MARKET_TICKER] + [MARKET_TICKER]
303
+ rows = []
304
+ if not U:
305
+ return pd.DataFrame()
306
+ for i in range(n_rows):
307
+ k = int(rng.integers(low=max(1, min(2, len(U))), high=min(8, len(U)) + 1))
308
+ picks = list(rng.choice(U, size=k, replace=False))
309
+ w = dirichlet_signed(k, rng)
310
+ gross = float(np.sum(np.abs(w)))
311
+ if gross <= 1e-12:
312
+ continue
313
+ w_expo = w / gross
314
+ weights = {picks[j]: float(w_expo[j]) for j in range(k)}
315
+ beta_i, er_capm_i, sigma_i = portfolio_stats(weights, cov_ann, betas, rf_ann, erp_ann)
316
+ rows.append({
317
+ "id": int(i),
318
+ "tickers": ",".join(picks),
319
+ "weights": ",".join(f"{x:.6f}" for x in w_expo),
320
+ "beta": float(beta_i),
321
+ "er_capm": float(er_capm_i),
322
+ "sigma": float(sigma_i),
323
+ })
324
+ return pd.DataFrame(rows)
325
+
326
+ # =========================
327
+ # Embeddings + MMR selection
328
+ # =========================
329
+ _embedder = None
330
+ def get_embedder():
331
+ global _embedder
332
+ if _embedder is None:
333
+ _embedder = SentenceTransformer(EMBED_MODEL_NAME)
334
+ return _embedder
335
+
336
+ def row_to_sentence(row: pd.Series) -> str:
337
+ try:
338
+ ts = row["tickers"].split(",")
339
+ ws = [float(x) for x in row["weights"].split(",")]
340
+ pairs = ", ".join([f"{ts[i]} {ws[i]:+.2f}" for i in range(min(len(ts), len(ws)))])
341
+ except Exception:
342
+ pairs = ""
343
+ return (f"portfolio with sigma {row['sigma']:.4f}, "
344
+ f"capm_return {row['er_capm']:.4f}, "
345
+ f"beta {row['beta']:.3f}, "
346
+ f"exposures {pairs}")
347
+
348
+ def mmr_select(query_emb, cand_embs, k: int = 3, lambda_param: float = MMR_LAMBDA) -> List[int]:
349
+ if cand_embs.shape[0] <= k:
350
+ return list(range(cand_embs.shape[0]))
351
+ sim_to_query = st_util.cos_sim(query_emb, cand_embs).cpu().numpy().reshape(-1)
352
+ chosen = []
353
+ candidate_indices = list(range(cand_embs.shape[0]))
354
+ first = int(np.argmax(sim_to_query))
355
+ chosen.append(first)
356
+ candidate_indices.remove(first)
357
+ while len(chosen) < k and candidate_indices:
358
+ max_score = -1e9
359
+ max_idx = candidate_indices[0]
360
+ # compute diversity term against already chosen
361
+ chosen_stack = cand_embs[chosen]
362
+ for idx in candidate_indices:
363
+ sim_q = sim_to_query[idx]
364
+ sim_d = float(st_util.cos_sim(cand_embs[idx], chosen_stack).max().cpu().numpy())
365
+ mmr_score = lambda_param * sim_q - (1.0 - lambda_param) * sim_d
366
+ if mmr_score > max_score:
367
+ max_score = mmr_score
368
+ max_idx = idx
369
+ chosen.append(max_idx)
370
+ candidate_indices.remove(max_idx)
371
+ return chosen
372
+
373
+ # =========================
374
+ # Yahoo symbol search (for UX)
375
+ # =========================
376
+ def yahoo_search(query: str):
377
+ if not query or len(query.strip()) == 0:
378
+ return []
379
+ url = "https://query1.finance.yahoo.com/v1/finance/search"
380
+ params = {"q": query.strip(), "quotesCount": 10, "newsCount": 0}
381
+ headers = {"User-Agent": "Mozilla/5.0"}
382
+ try:
383
+ r = requests.get(url, params=params, headers=headers, timeout=10)
384
+ r.raise_for_status()
385
+ data = r.json()
386
+ out = []
387
+ for q in data.get("quotes", []):
388
+ sym = q.get("symbol")
389
+ name = q.get("shortname") or q.get("longname") or ""
390
+ exch = q.get("exchDisp") or ""
391
+ if sym and sym.isascii():
392
+ out.append(f"{sym} | {name} | {exch}")
393
+ if not out:
394
+ out = [f"{query.strip().upper()} | typed symbol | n/a"]
395
+ return out[:10]
396
+ except Exception:
397
+ return [f"{query.strip().upper()} | typed symbol | n/a"]
398
+
399
+ _last_matches = []
400
+
401
+ # =========================
402
+ # Formatting helpers
403
+ # =========================
404
+ def fmt_pct(x: float) -> str:
405
+ try:
406
+ return f"{float(x)*100:.2f}%"
407
+ except Exception:
408
+ return "n/a"
409
+
410
+ def fmt_money(x: float) -> str:
411
+ try:
412
+ return f"${float(x):,.0f}"
413
+ except Exception:
414
+ return "n/a"
415
+
416
+ # =========================
417
+ # Gradio callbacks
418
+ # =========================
419
+ HORIZON_YEARS = 5.0
420
+ RF_CODE = fred_series_for_horizon(HORIZON_YEARS)
421
+ RF_ANN = fetch_fred_yield_annual(RF_CODE)
422
+
423
+ def do_search(query):
424
+ global _last_matches
425
+ _last_matches = yahoo_search(query)
426
+ note = "Select a symbol from Matches, then click Add."
427
+ return note, gr.update(choices=_last_matches, value=None)
428
+
429
+ def add_symbol(selection: str, table: pd.DataFrame):
430
+ if selection and " | " in selection:
431
+ symbol = selection.split(" | ")[0].strip().upper()
432
+ elif isinstance(selection, str) and selection.strip():
433
+ symbol = selection.strip().upper()
434
+ else:
435
+ return table, "Pick a row from Matches first."
436
+
437
+ current = []
438
+ if isinstance(table, pd.DataFrame) and len(table) > 0 and "ticker" in table.columns:
439
+ current = [str(x).upper() for x in table["ticker"].tolist() if str(x) != "nan"]
440
+
441
+ tickers = current if symbol in current else current + [symbol]
442
+ tickers = [t for t in tickers if t]
443
+
444
+ val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
445
+ tickers = [t for t in tickers if t in val]
446
+
447
+ amt_map = {}
448
+ if isinstance(table, pd.DataFrame) and len(table) > 0:
449
+ for _, r in table.iterrows():
450
+ t = str(r.get("ticker", "")).upper()
451
+ if t in tickers:
452
+ amt_map[t] = float(pd.to_numeric(r.get("amount_usd", 0.0), errors="coerce") or 0.0)
453
+
454
+ new_table = pd.DataFrame({"ticker": tickers, "amount_usd": [amt_map.get(t, 0.0) for t in tickers]})
455
+ msg = f"Added {symbol}" if symbol in tickers else f"{symbol} not valid or no data"
456
+ if len(new_table) > MAX_TICKERS:
457
+ new_table = new_table.iloc[:MAX_TICKERS]
458
+ msg = f"Reached max of {MAX_TICKERS}"
459
+ return new_table, msg
460
+
461
+ def lock_ticker_column(tb: pd.DataFrame):
462
+ if tb is None or len(tb) == 0:
463
+ return pd.DataFrame(columns=["ticker", "amount_usd"])
464
+ tickers = [str(x).upper() for x in tb["ticker"].tolist()]
465
+ amounts = pd.to_numeric(tb["amount_usd"], errors="coerce").fillna(0.0).tolist()
466
+ val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
467
+ tickers = [t for t in tickers if t in val]
468
+ amounts = amounts[:len(tickers)] + [0.0] * max(0, len(tickers) - len(amounts))
469
+ return pd.DataFrame({"ticker": tickers, "amount_usd": amounts})
470
+
471
+ def set_horizon(years: float):
472
+ y = max(1.0, min(100.0, float(years)))
473
+ code = fred_series_for_horizon(y)
474
+ rf = fetch_fred_yield_annual(code)
475
+ global HORIZON_YEARS, RF_CODE, RF_ANN
476
+ HORIZON_YEARS = y
477
+ RF_CODE = code
478
+ RF_ANN = rf
479
+ return f"Risk-free series {code}. Latest annual rate {rf:.2%}. Computations will use this."
480
+
481
+ def _table_from_weights(weights: Dict[str, float], gross_amt: float) -> pd.DataFrame:
482
+ items = []
483
+ for t, w in weights.items():
484
+ pct = float(w)
485
+ amt = float(w) * gross_amt
486
+ items.append({"ticker": t, "weight_%": round(pct * 100.0, 2), "amount_$": round(amt, 2)})
487
+ df = pd.DataFrame(items, columns=SUG_COLS)
488
+ if df.empty:
489
+ return pd.DataFrame(columns=SUG_COLS)
490
+ df["absw"] = df["weight_%"].abs()
491
+ df = df.sort_values("absw", ascending=False).drop(columns=["absw"])
492
+ return df
493
+
494
+ def _weights_dict_from_row(r: pd.Series) -> Dict[str, float]:
495
+ ts = [t.strip().upper() for t in str(r.get("tickers","")).split(",") if t]
496
+ ws = []
497
+ for x in str(r.get("weights","")).split(","):
498
+ try:
499
+ ws.append(float(x))
500
+ except Exception:
501
+ ws.append(0.0)
502
+ wmap = {}
503
+ for i in range(min(len(ts), len(ws))):
504
+ wmap[ts[i]] = ws[i]
505
+ gross = sum(abs(v) for v in wmap.values())
506
+ if gross <= 1e-12:
507
+ return {}
508
+ return {k: v / gross for k, v in wmap.items()}
509
+
510
+ def compute(lookback_years: int,
511
+ table: Optional[pd.DataFrame],
512
+ risk_bucket: str,
513
+ horizon_years: float):
514
+
515
+ try:
516
+ # --- sanitize input table
517
+ if table is None or len(table) == 0:
518
+ empty = pd.DataFrame(columns=POS_COLS)
519
+ emptyS = pd.DataFrame(columns=SUG_COLS)
520
+ emptyE = pd.DataFrame(columns=EFF_COLS)
521
+ return (None, "Add at least one ticker", "", empty,
522
+ emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions yet.")
523
+
524
+ df = table.copy().dropna(how="all")
525
+ if df.empty or "ticker" not in df.columns or "amount_usd" not in df.columns:
526
+ empty = pd.DataFrame(columns=POS_COLS)
527
+ emptyS = pd.DataFrame(columns=SUG_COLS)
528
+ emptyE = pd.DataFrame(columns=EFF_COLS)
529
+ return (None, "Positions table is empty or malformed.", "", empty,
530
+ emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions yet.")
531
+
532
+ df["ticker"] = df["ticker"].astype(str).str.upper().str.strip()
533
+ df["amount_usd"] = pd.to_numeric(df["amount_usd"], errors="coerce").fillna(0.0)
534
+
535
+ symbols = [t for t in df["ticker"].tolist() if t]
536
+ symbols = validate_tickers(symbols, lookback_years)
537
+ if len(symbols) == 0:
538
+ empty = pd.DataFrame(columns=POS_COLS)
539
+ emptyS = pd.DataFrame(columns=SUG_COLS)
540
+ emptyE = pd.DataFrame(columns=EFF_COLS)
541
+ return (None, "Could not validate any tickers", "Universe invalid",
542
+ empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
543
+
544
+ # --- universe & amounts
545
+ universe = sorted(set([s for s in symbols if s != MARKET_TICKER] + [MARKET_TICKER]))
546
+ df = df[df["ticker"].isin(symbols)].copy()
547
+ amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
548
+ gross_amt = sum(abs(v) for v in amounts.values())
549
+ if gross_amt <= 1e-9:
550
+ empty = pd.DataFrame(columns=POS_COLS)
551
+ emptyS = pd.DataFrame(columns=SUG_COLS)
552
+ emptyE = pd.DataFrame(columns=EFF_COLS)
553
+ return (None, "All amounts are zero", "Universe ok",
554
+ empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
555
+
556
+ weights = {k: v / gross_amt for k, v in amounts.items()}
557
+
558
+ # --- risk free & moments
559
+ rf_code = fred_series_for_horizon(horizon_years)
560
+ rf_ann = fetch_fred_yield_annual(rf_code)
561
+ moms = estimate_all_moments_aligned(universe, lookback_years, rf_ann)
562
+ betas, covA, erp_ann, sigma_mkt = moms["betas"], moms["cov_ann"], moms["erp_ann"], moms["sigma_m_ann"]
563
+
564
+ # --- portfolio stats (CAPM return + historical sigma)
565
+ beta_p, er_capm_p, sigma_p = portfolio_stats(weights, covA, betas, rf_ann, erp_ann)
566
+
567
+ # --- efficient alternatives on CML
568
+ a_sigma, b_sigma, mu_eff_sigma = efficient_same_sigma(sigma_p, rf_ann, erp_ann, sigma_mkt)
569
+ a_mu, b_mu, sigma_eff_mu = efficient_same_return(er_capm_p, rf_ann, erp_ann, sigma_mkt)
570
+
571
+ eff_same_sigma_tbl = _table_from_weights({MARKET_TICKER: a_sigma, BILLS_TICKER: b_sigma}, gross_amt)
572
+ eff_same_mu_tbl = _table_from_weights({MARKET_TICKER: a_mu, BILLS_TICKER: b_mu}, gross_amt)
573
+
574
+ # --- build synthetic dataset (based ONLY on this universe)
575
+ synth = build_synth_dataset(universe, covA, betas, rf_ann, erp_ann, n_rows=N_SYNTH, seed=777)
576
+ if synth.empty:
577
+ # fall back to trivial 3 variants of (market/bills) if universe too thin
578
+ fallback = []
579
+ for a in [0.2, 0.5, 0.8]:
580
+ w = {MARKET_TICKER: a, BILLS_TICKER: 1-a}
581
+ beta_i, er_capm_i, sigma_i = portfolio_stats(w, pd.DataFrame(), {MARKET_TICKER:1.0}, rf_ann, erp_ann)
582
+ fallback.append({"tickers": ",".join(w.keys()),
583
+ "weights": ",".join(f"{v:.6f}" for v in w.values()),
584
+ "beta": beta_i, "er_capm": er_capm_i, "sigma": sigma_i})
585
+ synth = pd.DataFrame(fallback)
586
+
587
+ # --- risk buckets by sigma (absolute +/- 5% around median)
588
+ median_sigma = float(synth["sigma"].median())
589
+ low_max = max(float(synth["sigma"].min()), median_sigma - 0.05)
590
+ high_min = median_sigma + 0.05
591
+
592
+ if risk_bucket == "Low":
593
+ cand_df = synth[synth["sigma"] <= low_max].copy()
594
+ elif risk_bucket == "High":
595
+ cand_df = synth[synth["sigma"] >= high_min].copy()
596
+ else:
597
+ cand_df = synth[(synth["sigma"] > low_max) & (synth["sigma"] < high_min)].copy()
598
+ if len(cand_df) == 0:
599
+ cand_df = synth.copy()
600
+
601
+ # --- embeddings + MMR for 3 diverse picks
602
+ embed = get_embedder()
603
+ cand_sentences = cand_df.apply(row_to_sentence, axis=1).tolist()
604
+ cur_pairs = ", ".join([f"{k}:{v:+.2f}" for k, v in sorted(weights.items())])
605
+ q_sentence = f"user portfolio ({risk_bucket} risk); capm_target {er_capm_p:.4f}; sigma_hist {sigma_p:.4f}; exposures {cur_pairs}"
606
+
607
+ cand_embs = embed.encode(cand_sentences, convert_to_tensor=True, normalize_embeddings=True, batch_size=64, show_progress_bar=False)
608
+ q_emb = embed.encode([q_sentence], convert_to_tensor=True, normalize_embeddings=True)[0]
609
+
610
+ sims = st_util.cos_sim(q_emb, cand_embs)[0]
611
+ top_idx = sims.topk(k=min(MMR_K, len(cand_df))).indices.cpu().numpy().tolist()
612
+ shortlist_embs = cand_embs[top_idx]
613
+ mmr_local = mmr_select(q_emb, shortlist_embs, k=3, lambda_param=MMR_LAMBDA)
614
+ chosen = [top_idx[i] for i in mmr_local]
615
+ recs = cand_df.iloc[chosen].reset_index(drop=True)
616
+
617
+ # --- suggestion tables for 3 picks
618
+ sugg_tables = []
619
+ sugg_meta = []
620
+ for _, r in recs.iterrows():
621
+ wmap = _weights_dict_from_row(r)
622
+ sugg_tables.append(_table_from_weights(wmap, gross_amt))
623
+ sugg_meta.append({"er_capm": float(r["er_capm"]), "sigma": float(r["sigma"]), "beta": float(r["beta"])})
624
+
625
+ # --- plot
626
+ img = plot_cml(
627
+ rf_ann, erp_ann, sigma_mkt,
628
+ sigma_p, er_capm_p,
629
+ same_sigma_sigma=sigma_p, same_sigma_mu=mu_eff_sigma,
630
+ same_mu_sigma=sigma_eff_mu, same_mu_mu=er_capm_p
631
+ )
632
+
633
+ # --- positions table (computed)
634
+ rows = []
635
+ for t in universe:
636
+ if t == MARKET_TICKER:
637
+ continue
638
+ rows.append({
639
+ "ticker": t,
640
+ "amount_usd": round(amounts.get(t, 0.0), 2),
641
+ "weight_exposure": round(weights.get(t, 0.0), 6),
642
+ "beta": round(betas.get(t, np.nan), 4) if t != MARKET_TICKER else 1.0
643
+ })
644
+ pos_table = pd.DataFrame(rows, columns=POS_COLS)
645
+
646
+ # --- info summary
647
+ info_lines = []
648
+ info_lines.append("### Inputs")
649
+ info_lines.append(f"- Lookback years **{int(lookback_years)}**")
650
+ info_lines.append(f"- Horizon years **{int(round(horizon_years))}**")
651
+ info_lines.append(f"- Risk-free **{fmt_pct(rf_ann)}** from **{rf_code}**")
652
+ info_lines.append(f"- Market ERP **{fmt_pct(erp_ann)}**")
653
+ info_lines.append(f"- Market σ **{fmt_pct(sigma_mkt)}**")
654
+ info_lines.append("")
655
+ info_lines.append("### Your portfolio (plotted as CAPM return, historical σ)")
656
+ info_lines.append(f"- Beta **{beta_p:.2f}**")
657
+ info_lines.append(f"- σ (historical) **{fmt_pct(sigma_p)}**")
658
+ info_lines.append(f"- E[return] (CAPM / SML) **{fmt_pct(er_capm_p)}**")
659
+ info_lines.append("")
660
+ info_lines.append("### Efficient alternatives on CML")
661
+ info_lines.append(f"- Same σ → Market **{a_sigma:.2f}**, Bills **{b_sigma:.2f}**, Return **{fmt_pct(mu_eff_sigma)}**")
662
+ info_lines.append(f"- Same μ → Market **{a_mu:.2f}**, Bills **{b_mu:.2f}**, σ **{fmt_pct(sigma_eff_mu)}**")
663
+ info_lines.append("")
664
+ info_lines.append(f"### Dataset-based suggestions (risk: **{risk_bucket}**)")
665
+ info_lines.append("Use the selector to flip between **Pick #1 / #2 / #3**. Table shows % exposure and $ amounts.")
666
+
667
+ # pad to exactly 3 tables for outputs
668
+ while len(sugg_tables) < 3:
669
+ sugg_tables.append(pd.DataFrame(columns=SUG_COLS))
670
+
671
+ pick_idx_default = 1
672
+ pick_msg_default = (f"Pick #1 — E[μ] {fmt_pct(sugg_meta[0]['er_capm'])}, "
673
+ f"σ {fmt_pct(sugg_meta[0]['sigma'])}, β {sugg_meta[0]['beta']:.2f}") if sugg_meta else "No suggestion."
674
+
675
+ return (img,
676
+ "\n".join(info_lines),
677
+ f"Universe set to {', '.join(universe)}",
678
+ pos_table,
679
+ sugg_tables[0], sugg_tables[1], sugg_tables[2],
680
+ eff_same_sigma_tbl, eff_same_mu_tbl,
681
+ json.dumps(sugg_meta), pick_idx_default, pick_msg_default)
682
+
683
+ except Exception as e:
684
+ empty = pd.DataFrame(columns=POS_COLS)
685
+ emptyS = pd.DataFrame(columns=SUG_COLS)
686
+ emptyE = pd.DataFrame(columns=EFF_COLS)
687
+ msg = f"⚠️ Compute failed: {e}"
688
+ if DEBUG:
689
+ msg += "\n\n```\n" + traceback.format_exc() + "\n```"
690
+ return (None, msg, "Error", empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
691
+
692
+ def on_pick_change(idx: int, meta_json: str):
693
+ try:
694
+ data = json.loads(meta_json)
695
+ except Exception:
696
+ data = []
697
+ if not data:
698
+ return "No suggestion."
699
+ i = int(idx) - 1
700
+ i = max(0, min(i, len(data)-1))
701
+ s = data[i]
702
+ return f"Pick #{i+1} — E[μ] {fmt_pct(s['er_capm'])}, σ {fmt_pct(s['sigma'])}, β {s['beta']:.2f}"
703
+
704
+ # =========================
705
+ # UI
706
+ # =========================
707
+ with gr.Blocks(title="Efficient Portfolio Advisor", css="#small-note {font-size: 12px; color:#666;}") as demo:
708
+
709
+ gr.Markdown("## Efficient Portfolio Advisor\n"
710
+ "Search symbols, enter **$ amounts**, set your **horizon**. "
711
+ "The plot shows your **CAPM expected return** vs **historical σ**, alongside the **CML**. "
712
+ "Recommendations are generated from a **synthetic dataset (1000 portfolios)** and ranked with **local embeddings (BGE-base)** for relevance + diversity.")
713
+
714
+ with gr.Tab("Build Portfolio"):
715
+ with gr.Row():
716
+ with gr.Column(scale=1):
717
+ q = gr.Textbox(label="Search symbol")
718
+ search_note = gr.Markdown(elem_id="small-note")
719
+ matches = gr.Dropdown(choices=[], label="Matches", value=None)
720
+ search_btn = gr.Button("Search")
721
+ add_btn = gr.Button("Add selected to portfolio")
722
+
723
+ gr.Markdown("### Positions (enter dollars; negatives allowed for shorts)")
724
+ table = gr.Dataframe(
725
+ headers=["ticker", "amount_usd"],
726
+ datatype=["str", "number"],
727
+ row_count=0,
728
+ col_count=(2, "fixed"),
729
+ wrap=True
730
+ )
731
+
732
+ with gr.Column(scale=1):
733
+ horizon = gr.Slider(1, 30, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Investment horizon (years)")
734
+ lookback = gr.Slider(1, 10, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Lookback (years) for β and σ")
735
+ risk_bucket = gr.Radio(["Low", "Medium", "High"], value="Medium", label="Recommendation risk level")
736
+ run_btn = gr.Button("Compute")
737
+
738
+ rf_msg = gr.Textbox(label="Risk-free source / status", interactive=False)
739
+ search_btn.click(fn=do_search, inputs=q, outputs=[search_note, matches])
740
+ add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
741
+ table.change(fn=lock_ticker_column, inputs=table, outputs=table)
742
+ horizon.change(fn=set_horizon, inputs=horizon, outputs=[rf_msg]) # FIX: single output
743
+
744
+ with gr.Tab("Results"):
745
+ with gr.Row():
746
+ with gr.Column(scale=1):
747
+ plot = gr.Image(label="Capital Market Line", type="pil")
748
+ summary = gr.Markdown(label="Summary")
749
+ universe_msg = gr.Textbox(label="Universe status", interactive=False)
750
+
751
+ with gr.Column(scale=1):
752
+ positions = gr.Dataframe(
753
+ label="Computed positions",
754
+ headers=POS_COLS,
755
+ datatype=["str", "number", "number", "number"],
756
+ col_count=(len(POS_COLS), "fixed"),
757
+ interactive=False
758
+ )
759
+
760
+ gr.Markdown("### Recommendations (always from embeddings)")
761
+ with gr.Row():
762
+ sugg1 = gr.Dataframe(label="Pick #1", interactive=False)
763
+ sugg2 = gr.Dataframe(label="Pick #2", interactive=False)
764
+ sugg3 = gr.Dataframe(label="Pick #3", interactive=False)
765
+
766
+ with gr.Row():
767
+ pick_idx = gr.Slider(1, 3, value=1, step=1, label="Carousel: show Pick #")
768
+ pick_meta = gr.Textbox(value="[]", visible=False)
769
+ pick_msg = gr.Markdown("")
770
+
771
+ gr.Markdown("### Efficient alternatives on the CML")
772
+ eff_same_sigma_tbl = gr.Dataframe(label="Efficient: Same σ", interactive=False)
773
+ eff_same_mu_tbl = gr.Dataframe(label="Efficient: Same μ", interactive=False)
774
+
775
+ run_btn.click(
776
+ fn=compute,
777
+ inputs=[lookback, table, risk_bucket, horizon],
778
+ outputs=[
779
+ plot, summary, universe_msg, positions,
780
+ sugg1, sugg2, sugg3,
781
+ eff_same_sigma_tbl, eff_same_mu_tbl,
782
+ pick_meta, pick_idx, pick_msg
783
+ ]
784
+ )
785
+ pick_idx.change(fn=on_pick_change, inputs=[pick_idx, pick_meta], outputs=pick_msg)
786
+
787
+ with gr.Tab("About"):
788
+ gr.Markdown(
789
+ "### Modality & Model\n"
790
+ "- **Modality**: Text (portfolio → text descriptions) powering **embeddings**\n"
791
+ "- **Embedding model**: `BAAI/bge-base-en-v1.5` (local, downloaded once; no API)\n\n"
792
+ "### Use case\n"
793
+ "Given a portfolio, we build a synthetic dataset of 1,000 alternative mixes **using the same tickers**, "
794
+ "compute each mix’s **CAPM return, σ, and β**, and rank candidates with embeddings to return **3 diverse, relevant suggestions** "
795
+ "for **Low / Medium / High** risk.\n\n"
796
+ "### Theory links\n"
797
+ "- Portfolio expected return in the plot uses **CAPM (SML)**, while σ is historical.\n"
798
+ "- The **CML** and the two **efficient alternatives** (same σ, same μ) use a mix of **Market (VOO)** and **Bills**."
799
+ )
800
+
801
+ if __name__ == "__main__":
802
+ demo.launch()