|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Audio IO methods are defined in this module (info, read, write), |
|
We rely on av library for faster read when possible, otherwise on torchaudio. |
|
""" |
|
|
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
import logging |
|
import typing as tp |
|
|
|
import numpy as np |
|
import soundfile |
|
import torch |
|
from torch.nn import functional as F |
|
import torchaudio as ta |
|
|
|
import av |
|
|
|
from .audio_utils import f32_pcm, i16_pcm, normalize_audio |
|
|
|
|
|
|
|
_av_initialized = False |
|
|
|
|
|
def _init_av(): |
|
global _av_initialized |
|
if _av_initialized: |
|
return |
|
logger = logging.getLogger('libav.mp3') |
|
logger.setLevel(logging.ERROR) |
|
_av_initialized = True |
|
|
|
|
|
@dataclass(frozen=True) |
|
class AudioFileInfo: |
|
sample_rate: int |
|
duration: float |
|
channels: int |
|
|
|
|
|
def _av_info(filepath: tp.Union[str, Path]) -> AudioFileInfo: |
|
_init_av() |
|
with av.open(str(filepath)) as af: |
|
stream = af.streams.audio[0] |
|
sample_rate = stream.codec_context.sample_rate |
|
duration = float(stream.duration * stream.time_base) |
|
channels = stream.channels |
|
return AudioFileInfo(sample_rate, duration, channels) |
|
|
|
|
|
def _soundfile_info(filepath: tp.Union[str, Path]) -> AudioFileInfo: |
|
info = soundfile.info(filepath) |
|
return AudioFileInfo(info.samplerate, info.duration, info.channels) |
|
|
|
|
|
def audio_info(filepath: tp.Union[str, Path]) -> AudioFileInfo: |
|
|
|
filepath = Path(filepath) |
|
if filepath.suffix in ['.flac', '.ogg']: |
|
|
|
return _soundfile_info(filepath) |
|
else: |
|
return _av_info(filepath) |
|
|
|
|
|
def _av_read(filepath: tp.Union[str, Path], seek_time: float = 0, duration: float = -1.) -> tp.Tuple[torch.Tensor, int]: |
|
"""FFMPEG-based audio file reading using PyAV bindings. |
|
Soundfile cannot read mp3 and av_read is more efficient than torchaudio. |
|
|
|
Args: |
|
filepath (str or Path): Path to audio file to read. |
|
seek_time (float): Time at which to start reading in the file. |
|
duration (float): Duration to read from the file. If set to -1, the whole file is read. |
|
Returns: |
|
tuple of torch.Tensor, int: Tuple containing audio data and sample rate |
|
""" |
|
_init_av() |
|
with av.open(str(filepath)) as af: |
|
stream = af.streams.audio[0] |
|
sr = stream.codec_context.sample_rate |
|
num_frames = int(sr * duration) if duration >= 0 else -1 |
|
frame_offset = int(sr * seek_time) |
|
|
|
|
|
af.seek(int(max(0, (seek_time - 0.1)) / stream.time_base), stream=stream) |
|
frames = [] |
|
length = 0 |
|
for frame in af.decode(streams=stream.index): |
|
current_offset = int(frame.rate * frame.pts * frame.time_base) |
|
strip = max(0, frame_offset - current_offset) |
|
buf = torch.from_numpy(frame.to_ndarray()) |
|
if buf.shape[0] != stream.channels: |
|
buf = buf.view(-1, stream.channels).t() |
|
buf = buf[:, strip:] |
|
frames.append(buf) |
|
length += buf.shape[1] |
|
if num_frames > 0 and length >= num_frames: |
|
break |
|
assert frames |
|
|
|
|
|
|
|
wav = torch.cat(frames, dim=1) |
|
assert wav.shape[0] == stream.channels |
|
if num_frames > 0: |
|
wav = wav[:, :num_frames] |
|
return f32_pcm(wav), sr |
|
|
|
|
|
def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0., |
|
duration: float = -1., pad: bool = False) -> tp.Tuple[torch.Tensor, int]: |
|
"""Read audio by picking the most appropriate backend tool based on the audio format. |
|
|
|
Args: |
|
filepath (str or Path): Path to audio file to read. |
|
seek_time (float): Time at which to start reading in the file. |
|
duration (float): Duration to read from the file. If set to -1, the whole file is read. |
|
pad (bool): Pad output audio if not reaching expected duration. |
|
Returns: |
|
tuple of torch.Tensor, int: Tuple containing audio data and sample rate. |
|
""" |
|
fp = Path(filepath) |
|
if fp.suffix in ['.flac', '.ogg']: |
|
|
|
info = _soundfile_info(filepath) |
|
frames = -1 if duration <= 0 else int(duration * info.sample_rate) |
|
frame_offset = int(seek_time * info.sample_rate) |
|
wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32) |
|
assert info.sample_rate == sr, f"Mismatch of sample rates {info.sample_rate} {sr}" |
|
wav = torch.from_numpy(wav).t().contiguous() |
|
if len(wav.shape) == 1: |
|
wav = torch.unsqueeze(wav, 0) |
|
elif ( |
|
fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats() |
|
and duration <= 0 and seek_time == 0 |
|
): |
|
|
|
wav, sr = ta.load(fp) |
|
else: |
|
wav, sr = _av_read(filepath, seek_time, duration) |
|
if pad and duration > 0: |
|
expected_frames = int(duration * sr) |
|
wav = F.pad(wav, (0, expected_frames - wav.shape[-1])) |
|
return wav, sr |
|
|
|
|
|
def audio_write(stem_name: tp.Union[str, Path], |
|
wav: torch.Tensor, sample_rate: int, |
|
format: str = 'wav', mp3_rate: int = 320, normalize: bool = True, |
|
strategy: str = 'peak', peak_clip_headroom_db: float = 1, |
|
rms_headroom_db: float = 18, loudness_headroom_db: float = 14, |
|
loudness_compressor: bool = False, |
|
log_clipping: bool = True, make_parent_dir: bool = True, |
|
add_suffix: bool = True) -> Path: |
|
"""Convenience function for saving audio to disk. Returns the filename the audio was written to. |
|
|
|
Args: |
|
stem_name (str or Path): Filename without extension which will be added automatically. |
|
format (str): Either "wav" or "mp3". |
|
mp3_rate (int): kbps when using mp3s. |
|
normalize (bool): if `True` (default), normalizes according to the prescribed |
|
strategy (see after). If `False`, the strategy is only used in case clipping |
|
would happen. |
|
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak', |
|
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square |
|
with extra headroom to avoid clipping. 'clip' just clips. |
|
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy. |
|
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger |
|
than the `peak_clip` one to avoid further clipping. |
|
loudness_headroom_db (float): Target loudness for loudness normalization. |
|
loudness_compressor (bool): Uses tanh for soft clipping when strategy is 'loudness'. |
|
when strategy is 'loudness' log_clipping (bool): If True, basic logging on stderr when clipping still |
|
occurs despite strategy (only for 'rms'). |
|
make_parent_dir (bool): Make parent directory if it doesn't exist. |
|
Returns: |
|
Path: Path of the saved audio. |
|
""" |
|
assert wav.dtype.is_floating_point, "wav is not floating point" |
|
if wav.dim() == 1: |
|
wav = wav[None] |
|
elif wav.dim() > 2: |
|
raise ValueError("Input wav should be at most 2 dimension.") |
|
assert wav.isfinite().all() |
|
wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db, |
|
rms_headroom_db, loudness_headroom_db, loudness_compressor, |
|
log_clipping=log_clipping, sample_rate=sample_rate, |
|
stem_name=str(stem_name)) |
|
kwargs: dict = {} |
|
if format == 'mp3': |
|
suffix = '.mp3' |
|
kwargs.update({"compression": mp3_rate}) |
|
elif format == 'wav': |
|
wav = i16_pcm(wav) |
|
suffix = '.wav' |
|
kwargs.update({"encoding": "PCM_S", "bits_per_sample": 16}) |
|
else: |
|
raise RuntimeError(f"Invalid format {format}. Only wav or mp3 are supported.") |
|
if not add_suffix: |
|
suffix = '' |
|
path = Path(str(stem_name) + suffix) |
|
if make_parent_dir: |
|
path.parent.mkdir(exist_ok=True, parents=True) |
|
try: |
|
ta.save(path, wav, sample_rate, **kwargs) |
|
except Exception: |
|
if path.exists(): |
|
|
|
path.unlink() |
|
raise |
|
return path |
|
|