Spaces:
Sleeping
Sleeping
adding llms separately
Browse files- utils/haystack.py +6 -6
utils/haystack.py
CHANGED
@@ -29,12 +29,12 @@ from haystack.components.builders.prompt_builder import PromptBuilder
|
|
29 |
|
30 |
def start_haystack(huggingface_token):
|
31 |
#Use this function to contruct a pipeline
|
|
|
|
|
|
|
32 |
llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1", token=huggingface_token)
|
33 |
llm.warm_up()
|
34 |
-
|
35 |
-
# start_qa_pipeline(llm)
|
36 |
-
keyword_llm = llm
|
37 |
-
answer_llm = llm
|
38 |
keyword_prompt_template = """
|
39 |
Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
40 |
Here is an examples:
|
@@ -70,13 +70,13 @@ Articles:
|
|
70 |
pipe.add_component("keyword_llm", keyword_llm)
|
71 |
pipe.add_component("pubmed_fetcher", fetcher)
|
72 |
pipe.add_component("prompt_builder", prompt_builder)
|
73 |
-
pipe.add_component("llm",
|
74 |
|
75 |
pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
|
76 |
pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
|
77 |
|
78 |
pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
|
79 |
-
pipe.connect("prompt_builder.prompt", "llm.prompt")
|
80 |
return pipe
|
81 |
|
82 |
|
|
|
29 |
|
30 |
def start_haystack(huggingface_token):
|
31 |
#Use this function to contruct a pipeline
|
32 |
+
keyword_llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1", token=huggingface_token)
|
33 |
+
keyword_llm.warm_up()
|
34 |
+
|
35 |
llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1", token=huggingface_token)
|
36 |
llm.warm_up()
|
37 |
+
|
|
|
|
|
|
|
38 |
keyword_prompt_template = """
|
39 |
Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
40 |
Here is an examples:
|
|
|
70 |
pipe.add_component("keyword_llm", keyword_llm)
|
71 |
pipe.add_component("pubmed_fetcher", fetcher)
|
72 |
pipe.add_component("prompt_builder", prompt_builder)
|
73 |
+
pipe.add_component("llm", llm)
|
74 |
|
75 |
pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
|
76 |
pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
|
77 |
|
78 |
pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
|
79 |
+
pipe.connect("prompt_builder.prompt", "llm.prompt")
|
80 |
return pipe
|
81 |
|
82 |
|