Spaces:
Runtime error
Runtime error
Kieran Fraser
commited on
Commit
·
8dcffda
1
Parent(s):
d4b0552
updating links
Browse filesSigned-off-by: Kieran Fraser <Kieran.Fraser@ibm.com>
- app.py +26 -16
- poisoned_models/deit_imagenette_poisoned_model_2.pt +3 -0
app.py
CHANGED
@@ -53,6 +53,14 @@ div.svelte-15lo0d8>*, div.svelte-15lo0d8>.form > * {
|
|
53 |
}
|
54 |
"""
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def sample_imagenette():
|
57 |
import torchvision
|
58 |
label_names = [
|
@@ -113,12 +121,7 @@ def clf_poison_evaluate(*args):
|
|
113 |
|
114 |
target_class = label_names.index(target_class)
|
115 |
|
116 |
-
|
117 |
-
'facebook/deit-tiny-distilled-patch16-224',
|
118 |
-
ignore_mismatched_sizes=True,
|
119 |
-
force_download=True,
|
120 |
-
num_labels=10
|
121 |
-
)
|
122 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
123 |
loss_fn = torch.nn.CrossEntropyLoss()
|
124 |
|
@@ -142,7 +145,7 @@ def clf_poison_evaluate(*args):
|
|
142 |
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
|
143 |
labels = np.asarray(train_dataset.targets)
|
144 |
classes = np.unique(labels)
|
145 |
-
samples_per_class =
|
146 |
|
147 |
x_subset = []
|
148 |
y_subset = []
|
@@ -226,6 +229,10 @@ def show_params(type):
|
|
226 |
return gr.Column(visible=True)
|
227 |
return gr.Column(visible=False)
|
228 |
|
|
|
|
|
|
|
|
|
229 |
# e.g. To use a local alternative theme: carbon_theme = Carbon()
|
230 |
carbon_theme = Carbon()
|
231 |
with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
|
@@ -248,12 +255,15 @@ with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
|
|
248 |
common red-team workflow to assess model vulnerability to data poisoning attacks 🧪</p>''')
|
249 |
|
250 |
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Check out the full suite of features provided by ART <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
|
251 |
-
target="blank_">here</a
|
252 |
-
|
253 |
-
|
|
|
254 |
gr.Markdown('''<hr/>''')
|
255 |
|
256 |
|
|
|
|
|
257 |
with gr.Row(elem_classes=["larger-gap", "custom-text"]):
|
258 |
with gr.Column(scale=1):
|
259 |
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ First lets set the scene. You have a dataset of images, such as Imagenette.</p>''')
|
@@ -287,28 +297,28 @@ with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
|
|
287 |
with gr.Column(scale=1):
|
288 |
attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
|
289 |
target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.",
|
290 |
-
choices=['
|
291 |
'cassette player',
|
292 |
'chainsaw',
|
293 |
-
'
|
294 |
'french horn',
|
295 |
'garbage truck',
|
296 |
'gas pump',
|
297 |
'golf ball',
|
298 |
-
'parachutte',], value='
|
299 |
eval_btn_patch = gr.Button("Evaluate")
|
300 |
with gr.Row(elem_classes="custom-text"):
|
301 |
with gr.Column(scale=10):
|
302 |
-
clean_gallery = gr.Gallery(label="Clean", preview=False, show_download_button=True)
|
303 |
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
|
304 |
with gr.Column(scale=1, min_width='0px', elem_classes='symbols'):
|
305 |
gr.Markdown('''➕''')
|
306 |
-
with gr.Column(scale=5):
|
307 |
trigger_image = gr.Image(label="Trigger Image", value="./baby-on-board.png", interactive=False)
|
308 |
with gr.Column(scale=1, min_width='0px'):
|
309 |
gr.Markdown('''🟰''', elem_classes='symbols')
|
310 |
with gr.Column(scale=10):
|
311 |
-
poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True)
|
312 |
poison_success = gr.Number(label="Poison Success", precision=2)
|
313 |
|
314 |
eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, trigger_image, target_class],
|
|
|
53 |
}
|
54 |
"""
|
55 |
|
56 |
+
global model
|
57 |
+
model = transformers.AutoModelForImageClassification.from_pretrained(
|
58 |
+
'facebook/deit-tiny-distilled-patch16-224',
|
59 |
+
ignore_mismatched_sizes=True,
|
60 |
+
force_download=True,
|
61 |
+
num_labels=10
|
62 |
+
)
|
63 |
+
|
64 |
def sample_imagenette():
|
65 |
import torchvision
|
66 |
label_names = [
|
|
|
121 |
|
122 |
target_class = label_names.index(target_class)
|
123 |
|
124 |
+
|
|
|
|
|
|
|
|
|
|
|
125 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
126 |
loss_fn = torch.nn.CrossEntropyLoss()
|
127 |
|
|
|
145 |
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
|
146 |
labels = np.asarray(train_dataset.targets)
|
147 |
classes = np.unique(labels)
|
148 |
+
samples_per_class = 20
|
149 |
|
150 |
x_subset = []
|
151 |
y_subset = []
|
|
|
229 |
return gr.Column(visible=True)
|
230 |
return gr.Column(visible=False)
|
231 |
|
232 |
+
head_script = '''
|
233 |
+
<script async defer src="https://buttons.github.io/buttons.js"></script>
|
234 |
+
'''
|
235 |
+
|
236 |
# e.g. To use a local alternative theme: carbon_theme = Carbon()
|
237 |
carbon_theme = Carbon()
|
238 |
with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
|
|
|
255 |
common red-team workflow to assess model vulnerability to data poisoning attacks 🧪</p>''')
|
256 |
|
257 |
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Check out the full suite of features provided by ART <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
|
258 |
+
target="blank_">here</a>. To dive further into poisoning attacks with Hugging Face and ART, check out our
|
259 |
+
<a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_poisoning.ipynb"
|
260 |
+
target="_blank">notebook</a>. Also feel free to contribute and give our repo a ⭐.</i></p>''')
|
261 |
+
|
262 |
gr.Markdown('''<hr/>''')
|
263 |
|
264 |
|
265 |
+
|
266 |
+
|
267 |
with gr.Row(elem_classes=["larger-gap", "custom-text"]):
|
268 |
with gr.Column(scale=1):
|
269 |
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ First lets set the scene. You have a dataset of images, such as Imagenette.</p>''')
|
|
|
297 |
with gr.Column(scale=1):
|
298 |
attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
|
299 |
target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.",
|
300 |
+
choices=['church',
|
301 |
'cassette player',
|
302 |
'chainsaw',
|
303 |
+
'dog',
|
304 |
'french horn',
|
305 |
'garbage truck',
|
306 |
'gas pump',
|
307 |
'golf ball',
|
308 |
+
'parachutte',], value='church')
|
309 |
eval_btn_patch = gr.Button("Evaluate")
|
310 |
with gr.Row(elem_classes="custom-text"):
|
311 |
with gr.Column(scale=10):
|
312 |
+
clean_gallery = gr.Gallery(label="Clean", preview=False, show_download_button=True, height=600)
|
313 |
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
|
314 |
with gr.Column(scale=1, min_width='0px', elem_classes='symbols'):
|
315 |
gr.Markdown('''➕''')
|
316 |
+
with gr.Column(scale=5, elem_classes='symbols'):
|
317 |
trigger_image = gr.Image(label="Trigger Image", value="./baby-on-board.png", interactive=False)
|
318 |
with gr.Column(scale=1, min_width='0px'):
|
319 |
gr.Markdown('''🟰''', elem_classes='symbols')
|
320 |
with gr.Column(scale=10):
|
321 |
+
poison_gallery = gr.Gallery(label="Poisoned", preview=False, show_download_button=True, height=600)
|
322 |
poison_success = gr.Number(label="Poison Success", precision=2)
|
323 |
|
324 |
eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, trigger_image, target_class],
|
poisoned_models/deit_imagenette_poisoned_model_2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39f8f6f68436a69a2c06b480934eda88e2279e3b03db5226ed6b55eef16cce61
|
3 |
+
size 22201811
|