Update index.html
Browse files- index.html +4 -4
index.html
CHANGED
@@ -76,7 +76,7 @@ This phenomenon could hamper scenarios requiring accurate uncertainty estimation
|
|
76 |
</div>
|
77 |
</div>
|
78 |
|
79 |
-
<h3 id="
|
80 |
<p>Objectively, researchers utilize <strong>Calibration Metrics</strong> to measure the calibration error for a model, for example,
|
81 |
Expected Calibration Error (ECE), Static Calibration Error (SCE), Adaptive Calibration Error (ACE), etc.</p>
|
82 |
|
@@ -84,14 +84,14 @@ Expected Calibration Error (ECE), Static Calibration Error (SCE), Adaptive Calib
|
|
84 |
<div><img id="jailbreak-intro-img" src="images/metrics/intro-metric-example.png" /></div>
|
85 |
</div>
|
86 |
|
87 |
-
<div id="
|
88 |
-
<div id="
|
89 |
<a href="#ECE-formula" class="selected">Refusal Loss</a>
|
90 |
<a href="#SCE-formula">Refusal Loss Approximation</a>
|
91 |
<a href="#ACE-formula">Gradient Estimation</a>
|
92 |
<div style="clear: both"></div>
|
93 |
</div>
|
94 |
-
<div id="
|
95 |
<span id="ECE-formula" class="formula" style="">$$\displaystyle \phi_\theta(x)=1-\mathbb{E}_{y \sim T_\theta(x)} JB(y)$$</span>
|
96 |
<span id="SCE-formula" class="formula" style="display: none;">$$\displaystyle f_\theta(x)=1-\frac{1}{N}\sum_{i=1}^N JB(y_i)$$</span>
|
97 |
<span id="ACE-formula" class="formula" style="display: none;">$$\displaystyle \text{ACE}=\frac{1}{KR}\sum_{k=1}^{K}\sum_{r=1}^{R}|\text{acc}(r,k)-\text{conf}(r,k)|$$</span>
|
|
|
76 |
</div>
|
77 |
</div>
|
78 |
|
79 |
+
<h3 id="refusal-loss">Calibration Metrics</h3>
|
80 |
<p>Objectively, researchers utilize <strong>Calibration Metrics</strong> to measure the calibration error for a model, for example,
|
81 |
Expected Calibration Error (ECE), Static Calibration Error (SCE), Adaptive Calibration Error (ACE), etc.</p>
|
82 |
|
|
|
84 |
<div><img id="jailbreak-intro-img" src="images/metrics/intro-metric-example.png" /></div>
|
85 |
</div>
|
86 |
|
87 |
+
<div id="refusal-loss-formula" class="container">
|
88 |
+
<div id="refusal-loss-formula-list" class="row align-items-center formula-list">
|
89 |
<a href="#ECE-formula" class="selected">Refusal Loss</a>
|
90 |
<a href="#SCE-formula">Refusal Loss Approximation</a>
|
91 |
<a href="#ACE-formula">Gradient Estimation</a>
|
92 |
<div style="clear: both"></div>
|
93 |
</div>
|
94 |
+
<div id="refusal-loss-formula-content" class="row align-items-center">
|
95 |
<span id="ECE-formula" class="formula" style="">$$\displaystyle \phi_\theta(x)=1-\mathbb{E}_{y \sim T_\theta(x)} JB(y)$$</span>
|
96 |
<span id="SCE-formula" class="formula" style="display: none;">$$\displaystyle f_\theta(x)=1-\frac{1}{N}\sum_{i=1}^N JB(y_i)$$</span>
|
97 |
<span id="ACE-formula" class="formula" style="display: none;">$$\displaystyle \text{ACE}=\frac{1}{KR}\sum_{k=1}^{K}\sum_{r=1}^{R}|\text{acc}(r,k)-\text{conf}(r,k)|$$</span>
|