Update index.html
Browse files- index.html +18 -18
index.html
CHANGED
@@ -4,13 +4,13 @@
|
|
4 |
<meta charset="UTF-8">
|
5 |
|
6 |
<!-- Begin Jekyll SEO tag v2.8.0 -->
|
7 |
-
<title>
|
8 |
-
<meta property="og:title" content="
|
9 |
<meta property="og:locale" content="en_US" />
|
10 |
-
<meta name="description" content="
|
11 |
-
<meta property="og:description" content="
|
12 |
<script type="application/ld+json">
|
13 |
-
{"@context":"https://schema.org","@type":"WebSite","description":"
|
14 |
<!-- End Jekyll SEO tag -->
|
15 |
|
16 |
<link rel="preconnect" href="https://fonts.gstatic.com">
|
@@ -45,8 +45,8 @@
|
|
45 |
<a id="skip-to-content" href="#content">Skip to the content.</a>
|
46 |
|
47 |
<header class="page-header" role="banner">
|
48 |
-
<h1 class="project-name">
|
49 |
-
<h2 class="project-tagline">
|
50 |
|
51 |
|
52 |
</header>
|
@@ -62,7 +62,7 @@ our proposed framework <strong>Neural Clamping</strong>, which employs a simple
|
|
62 |
transformation on a pre-trained classifier. We also provide other calibration approaches
|
63 |
(e.g., temperature scaling) to compare with Neural Clamping.</p>
|
64 |
|
65 |
-
<h2 id="what-is-
|
66 |
<p>Neural Network Calibration seeks to make model prediction align with its true correctness likelihood.
|
67 |
A well-calibrated model should provide accurate predictions and reliable confidence when making inferences. On the
|
68 |
contrary, a poor calibration model would have a wide gap between its accuracy and average confidence level.
|
@@ -70,24 +70,24 @@ This phenomenon could hamper scenarios requiring accurate uncertainty estimation
|
|
70 |
(e.g., autonomous driving systems, medical diagnosis, etc.).</p>
|
71 |
|
72 |
<div class="container">
|
73 |
-
<div id="
|
74 |
-
<img id="
|
75 |
</div>
|
76 |
</div>
|
77 |
|
78 |
-
<h3 id="
|
79 |
<p>Objectively, researchers utilize <strong>Calibration Metrics</strong> to measure the calibration error for a model, for example,
|
80 |
Expected Calibration Error (ECE), Static Calibration Error (SCE), Adaptive Calibration Error (ACE), etc.</p>
|
81 |
|
82 |
-
<div class="container
|
83 |
-
<div><img id="
|
84 |
</div>
|
85 |
|
86 |
-
<div id="
|
87 |
-
<div id="
|
88 |
-
<a href="#ECE-formula" class="selected">
|
89 |
-
<a href="#SCE-formula">
|
90 |
-
<a href="#ACE-formula">
|
91 |
<div style="clear: both"></div>
|
92 |
</div>
|
93 |
<div id="calibration-metrics-formula-content" class="row align-items-center">
|
|
|
4 |
<meta charset="UTF-8">
|
5 |
|
6 |
<!-- Begin Jekyll SEO tag v2.8.0 -->
|
7 |
+
<title>NCTV | Neural Clamping Toolkit and Visualization for Neural Network Calibration</title>
|
8 |
+
<meta property="og:title" content="NCTV" />
|
9 |
<meta property="og:locale" content="en_US" />
|
10 |
+
<meta name="description" content="Neural Clamping Toolkit and Visualization for Neural Network Calibration" />
|
11 |
+
<meta property="og:description" content="Neural Clamping Toolkit and Visualization for Neural Network Calibration" />
|
12 |
<script type="application/ld+json">
|
13 |
+
{"@context":"https://schema.org","@type":"WebSite","description":"Neural Clamping Toolkit and Visualization for Neural Network Calibration","headline":"NCTV","name":"NCTV","url":"https://huggingface.co/spaces/hsiung/NCTV"}</script>
|
14 |
<!-- End Jekyll SEO tag -->
|
15 |
|
16 |
<link rel="preconnect" href="https://fonts.gstatic.com">
|
|
|
45 |
<a id="skip-to-content" href="#content">Skip to the content.</a>
|
46 |
|
47 |
<header class="page-header" role="banner">
|
48 |
+
<h1 class="project-name">NCTV</h1>
|
49 |
+
<h2 class="project-tagline">Neural Clamping Toolkit and Visualization for Neural Network Calibration</h2>
|
50 |
|
51 |
|
52 |
</header>
|
|
|
62 |
transformation on a pre-trained classifier. We also provide other calibration approaches
|
63 |
(e.g., temperature scaling) to compare with Neural Clamping.</p>
|
64 |
|
65 |
+
<h2 id="what-is-calibration">What is Calibration?</h2>
|
66 |
<p>Neural Network Calibration seeks to make model prediction align with its true correctness likelihood.
|
67 |
A well-calibrated model should provide accurate predictions and reliable confidence when making inferences. On the
|
68 |
contrary, a poor calibration model would have a wide gap between its accuracy and average confidence level.
|
|
|
70 |
(e.g., autonomous driving systems, medical diagnosis, etc.).</p>
|
71 |
|
72 |
<div class="container">
|
73 |
+
<div id="calibration-intro" class="row align-items-center calibration-intro-sec">
|
74 |
+
<img id="calibration-intro-img" src="https://hsiung.cc/NCTV/images/conf_acc_demo.gif" />
|
75 |
</div>
|
76 |
</div>
|
77 |
|
78 |
+
<h3 id="calibration-metrics">Calibration Metrics</h3>
|
79 |
<p>Objectively, researchers utilize <strong>Calibration Metrics</strong> to measure the calibration error for a model, for example,
|
80 |
Expected Calibration Error (ECE), Static Calibration Error (SCE), Adaptive Calibration Error (ACE), etc.</p>
|
81 |
|
82 |
+
<div class="container calibration-intro-sec">
|
83 |
+
<div><img id="calibration-intro-img" src="images/metrics/intro-metric-example.png" /></div>
|
84 |
</div>
|
85 |
|
86 |
+
<div id="calibration-metrics-formula" class="container">
|
87 |
+
<div id="calibration-metrics-formula-list" class="row align-items-center formula-list">
|
88 |
+
<a href="#ECE-formula" class="selected">ECE</a>
|
89 |
+
<a href="#SCE-formula">SCE</a>
|
90 |
+
<a href="#ACE-formula">ACE</a>
|
91 |
<div style="clear: both"></div>
|
92 |
</div>
|
93 |
<div id="calibration-metrics-formula-content" class="row align-items-center">
|