allenhzy commited on
Commit
dcaee4d
·
1 Parent(s): b1a60ad
Files changed (1) hide show
  1. index.html +22 -2
index.html CHANGED
@@ -248,12 +248,12 @@
248
  <!-- Relations -->
249
  <section class="section">
250
  <div class="container is-max-desktop">
251
- <h2 class="title is-3">Neighborhood Relations of Benign Examples and AEs</h2>
252
  <div class="columns is-centered">
253
  <div class="column container-centered">
254
  <img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
255
  <p>
256
- <strong>Figure 1. Neighborhood Relations of Benign Examples and AEs.</strong>
257
  </p>
258
  </div>
259
  </div>
@@ -460,6 +460,26 @@
460
  </div>
461
  </div>
462
  </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463
  </div>
464
 
465
 
 
248
  <!-- Relations -->
249
  <section class="section">
250
  <div class="container is-max-desktop">
251
+ <h2 class="title is-3">Neighborhood Relations of AEs and Clean Samples</h2>
252
  <div class="columns is-centered">
253
  <div class="column container-centered">
254
  <img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
255
  <p>
256
+ <strong>Figure 1. Neighborhood Relations of AEs and Clean Samples.</strong>
257
  </p>
258
  </div>
259
  </div>
 
460
  </div>
461
  </div>
462
  </div>
463
+
464
+ <div class="columns is-centered">
465
+ <div class="column">
466
+ <p id="label-loss">
467
+ Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
468
+ and the detection strategy. For an SSL model with a feature extractor $f$, a projector $h$, and a classification head $g$,
469
+ the classification branch can be formulated as $\mathbb{C} = f\circ g$ and the representation branch as $\mathbb{R} = f\circ h$.
470
+ To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
471
+ </p>
472
+ <p id="representation-loss", style="display: none">
473
+ where $\mathcal{S}$ represents cosine similarity, $k$ represents the number of generated neighbors,
474
+ and the linear augmentation function $W(x)=W(x,p);~p\sim P$ randomly samples $p$ from the parameter distribution $P$ to generate different neighbors.
475
+ Note that we guarantee the generated neighbors are fixed each time by fixing the random seed. The adaptive adversaries perform attacks on the following objective function:
476
+ </p>
477
+
478
+ <p id="total-loss", style="display: none;">
479
+ where $\mathcal{L}_C$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
480
+ </p>
481
+ </div>
482
+ </div>
483
  </div>
484
 
485