import gradio as gr | |
from transformers import pipeline | |
# Load a sentiment analysis pipeline from Hugging Face | |
sentiment_pipeline = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None) | |
def analyze_sentiment(text): | |
result = sentiment_pipeline(text) | |
print(result) | |
return result[0][0]["label"] #pipeline return an aray of array of dictionary | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=analyze_sentiment, | |
inputs=[gr.Textbox(label="Enter text here")], | |
outputs=[gr.Label(label="Sentiment")], | |
title="Sentiment Analyzer", | |
description="Enter a text to analyze its sentiment", | |
) | |
# Launch the Gradio interface | |
iface.launch() |