James McCool
Add Streamlit app for NHL pivot analysis with MongoDB integration and deployment configuration
629b5f7
import numpy as np
from numpy import random
import pandas as pd
import streamlit as st
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}','GPP%': '{:.2%}'}
@st.cache_resource(ttl = 599)
def player_stat_table():
collection = db["Player_Level_ROO"]
cursor = collection.find()
load_display = pd.DataFrame(cursor)
load_display.replace('', np.nan, inplace=True)
player_stats = load_display.copy()
dk_load_display = load_display[load_display['Site'] == 'Draftkings']
fd_load_display = load_display[load_display['Site'] == 'Fanduel']
dk_load_display = dk_load_display.sort_values(by='Own', ascending=False)
fd_load_display = fd_load_display.sort_values(by='Own', ascending=False)
dk_load_display = dk_load_display.dropna(subset=['Own'])
fd_load_display = fd_load_display.dropna(subset=['Own'])
dk_roo_raw = dk_load_display
fd_roo_raw = fd_load_display
return player_stats, dk_roo_raw, fd_roo_raw
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])
with tab1:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if data_var1 == 'User':
raw_baselines = proj_dataframe
elif data_var1 != 'User':
raw_baselines = dk_roo_raw[dk_roo_raw['Slate'] == 'Main Slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
elif site_var1 == 'Fanduel':
if data_var1 == 'User':
raw_baselines = proj_dataframe
elif data_var1 != 'User':
raw_baselines = fd_roo_raw[fd_roo_raw['Slate'] == 'Main Slate']
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq')
if check_seq == 'Single Player':
player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
elif check_seq == 'Top X Owned':
top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1)
Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
if pos_var1 == 'Specific Positions':
pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
elif pos_var1 == 'All Positions':
pos_var_list = raw_baselines.Position.values.tolist()
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
with col2:
placeholder = st.empty()
displayholder = st.empty()
if st.button('Simulate appropriate pivots'):
with placeholder:
if site_var1 == 'Draftkings':
working_roo = raw_baselines
working_roo.replace('', 0, inplace=True)
if site_var1 == 'Fanduel':
working_roo = raw_baselines
working_roo.replace('', 0, inplace=True)
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
pos_dict = dict(zip(working_roo.Player, working_roo.Position))
total_sims = 1000
if check_seq == 'Single Player':
player_var = working_roo.loc[working_roo['Player'] == player_check]
player_var = player_var.reset_index()
working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
flex_file['Floor_raw'] = flex_file['Median'] * .25
flex_file['Ceiling_raw'] = flex_file['Median'] * 2
flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
flex_file['STD'] = flex_file['Median'] / 3
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
elif check_seq == 'Top X Owned':
if pos_var1 == 'Specific Positions':
raw_baselines = raw_baselines[raw_baselines['Position'].isin(pos_var_list)]
player_check = raw_baselines['Player'].head(top_x_var).tolist()
final_proj_list = []
for players in player_check:
players_pos = pos_dict[players]
player_var = working_roo.loc[working_roo['Player'] == players]
player_var = player_var.reset_index()
working_roo_temp = working_roo[working_roo['Position'] == players_pos]
working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median']]
flex_file['Floor_raw'] = flex_file['Median'] * .25
flex_file['Ceiling_raw'] = flex_file['Median'] * 2
flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
flex_file['STD'] = flex_file['Median'] / 3
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj['Pivot_source'] = players
final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
final_proj_list.append(final_Proj)
st.write(f'finished run for {players}')
# Concatenate all the final_Proj dataframes
final_Proj_combined = pd.concat(final_proj_list)
final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False)
final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']]
st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True) # Assign the combined dataframe back to final_Proj
placeholder.empty()
with displayholder.container():
if 'final_Proj' in st.session_state:
st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(st.session_state.final_Proj),
file_name='NHL_pivot_export.csv',
mime='text/csv',
)
else:
st.write("Run some pivots my dude/dudette")
with tab2:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)