|
|
import streamlit as st |
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from pymongo import MongoClient |
|
|
from database import db |
|
|
|
|
|
@st.cache_data(ttl = 599) |
|
|
def init_DK_SD_seed_frames(slate, split, translation_dict): |
|
|
|
|
|
collection = db[translation_dict[slate]] |
|
|
cursor = collection.find().limit(split) |
|
|
|
|
|
raw_display = pd.DataFrame(list(cursor)) |
|
|
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] |
|
|
DK_seed = raw_display.to_numpy() |
|
|
|
|
|
return DK_seed |
|
|
|
|
|
@st.cache_data(ttl = 599) |
|
|
def init_FD_SD_seed_frames(slate, split, translation_dict): |
|
|
|
|
|
collection = db[translation_dict[slate]] |
|
|
cursor = collection.find().limit(split) |
|
|
|
|
|
raw_display = pd.DataFrame(list(cursor)) |
|
|
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] |
|
|
FD_seed = raw_display.to_numpy() |
|
|
|
|
|
return FD_seed |
|
|
|
|
|
@st.cache_data(ttl = 599) |
|
|
def init_SD_baselines(slate_var): |
|
|
collection = db['DK_SD_NFL_ROO'] |
|
|
cursor = collection.find() |
|
|
|
|
|
raw_display = pd.DataFrame(list(cursor)) |
|
|
raw_display = raw_display[raw_display['version'] == 'overall'] |
|
|
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', |
|
|
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] |
|
|
raw_display = raw_display.rename(columns={'player_id': 'player_ID'}) |
|
|
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own'] |
|
|
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100) |
|
|
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum() |
|
|
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var |
|
|
raw_display['cpt_Median'] = raw_display['Median'] * 1.25 |
|
|
raw_display['STDev'] = raw_display['Median'] / 4 |
|
|
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4 |
|
|
|
|
|
dk_raw = raw_display.dropna(subset=['Median']) |
|
|
|
|
|
collection = db['FD_SD_NFL_ROO'] |
|
|
cursor = collection.find() |
|
|
|
|
|
raw_display = pd.DataFrame(list(cursor)) |
|
|
raw_display = raw_display[raw_display['version'] == 'overall'] |
|
|
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', |
|
|
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] |
|
|
raw_display = raw_display.rename(columns={'player_id': 'player_ID'}) |
|
|
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own'] |
|
|
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100) |
|
|
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum() |
|
|
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var |
|
|
raw_display['cpt_Median'] = raw_display['Median'] * 1.25 |
|
|
raw_display['STDev'] = raw_display['Median'] / 4 |
|
|
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4 |
|
|
|
|
|
fd_raw = raw_display.dropna(subset=['Median']) |
|
|
|
|
|
return dk_raw, fd_raw |
|
|
|
|
|
@st.cache_data |
|
|
def convert_df(array): |
|
|
array = pd.DataFrame(array, columns=column_names) |
|
|
return array.to_csv().encode('utf-8') |
|
|
|
|
|
@st.cache_data |
|
|
def calculate_SD_value_frequencies(np_array): |
|
|
unique, counts = np.unique(np_array[:, :6], return_counts=True) |
|
|
frequencies = counts / len(np_array) |
|
|
combined_array = np.column_stack((unique, frequencies)) |
|
|
return combined_array |
|
|
|
|
|
@st.cache_data |
|
|
def sim_SD_contest(Sim_size, seed_frame, maps_dict, Contest_Size): |
|
|
SimVar = 1 |
|
|
Sim_Winners = [] |
|
|
|
|
|
|
|
|
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__) |
|
|
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__) |
|
|
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__) |
|
|
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__) |
|
|
|
|
|
st.write('Simulating contest on frames') |
|
|
|
|
|
while SimVar <= Sim_size: |
|
|
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)] |
|
|
|
|
|
sample_arrays1 = np.c_[ |
|
|
fp_random, |
|
|
np.sum(np.random.normal( |
|
|
loc=np.concatenate([ |
|
|
vec_cpt_projection_map(fp_random[:, 0:1]), |
|
|
vec_projection_map(fp_random[:, 1:-7]) |
|
|
], axis=1), |
|
|
scale=np.concatenate([ |
|
|
vec_cpt_stdev_map(fp_random[:, 0:1]), |
|
|
vec_stdev_map(fp_random[:, 1:-7]) |
|
|
], axis=1)), |
|
|
axis=1) |
|
|
] |
|
|
|
|
|
sample_arrays = sample_arrays1 |
|
|
|
|
|
final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]] |
|
|
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]] |
|
|
Sim_Winners.append(best_lineup) |
|
|
SimVar += 1 |
|
|
|
|
|
return Sim_Winners |