Spaces:
Sleeping
Sleeping
Updated line 21 with: self.model = yolov9.load(self.model_path, device="cpu") # Inference generated from CPU (And a # on line 22)
bdc8c91
verified
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import yolov9 | |
class Inference_Nascent_Spawning_Deriving_From_YOLOv9: | |
def __init__(self): | |
self.model = None | |
self.model_path = None | |
self.image_size = None | |
self.conf_threshold = None | |
self.iou_threshold = None | |
# Object behavior / Method -> 1 | |
def download_models(self, model_id): | |
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./") | |
return f"./{model_id}" | |
# Object behavior / Method -> 2 | |
def load_model(self, model_id): | |
self.model_path = self.download_models(model_id) | |
self.model = yolov9.load(self.model_path, device="cpu") # Inference generated from CPU | |
#self.model = yolov9.load(self.model_path, device="cuda:0") | |
# Object behavior / Method -> 3 | |
def configure_model(self, conf_threshold, iou_threshold): | |
self.conf_threshold = conf_threshold | |
self.iou_threshold = iou_threshold | |
self.model.conf = self.conf_threshold | |
self.model.iou = self.iou_threshold | |
# Object behavior / Method -> 4 | |
def perform_inference(self, img_path,model_id,image_size, conf_threshold, iou_threshold): | |
self.image_size = image_size | |
self.load_model(model_id) # Load the model before performing inference | |
self.configure_model(conf_threshold, iou_threshold) | |
results = self.model(img_path, size=self.image_size) | |
output = results.render() | |
return output[0] | |
# Object behavior / Method -> 5 | |
# Note: 5 is a method deriving from within the class with the name | |
# Inference_Nascent_Spawning_Deriving_From_YOLOv9 | |
# One can also declare outside of the OOP as a function, which in turn, | |
# calls the methods inside of the OOP leveraging the functionality | |
# fostering from each unique Object behavior / Method | |
# Personal preference -> This instantiation from within OOP | |
def launch_gradio_app(self): | |
with gr.Blocks() as gradio_app: | |
with gr.Row(): | |
with gr.Column(): | |
img_path = gr.Image(type='filepath', label='Image') | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=[ | |
"gelan-c.pt", | |
"gelan-e.pt", | |
"yolov9-c.pt", | |
"yolov9-e.pt", | |
], | |
value="gelan-e.pt", | |
) | |
image_size = gr.Slider( | |
label="Image Size", | |
minimum=320, | |
maximum=1280, | |
step=32, | |
value=640, # Default value of 640 foments higher percentage obverse the image detection | |
) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.4, | |
) | |
iou_threshold = gr.Slider( | |
label="IoU Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
yolov9_infer = gr.Button(value="Inference") | |
with gr.Column(): | |
output_numpy = gr.Image(type="numpy", label="Output") | |
# yolov9_infer leveraging click functionality | |
# Resembles iface = gr.Interface( | |
#fn=... | |
#inputs=[], | |
#outputs=[], | |
yolov9_infer.click( | |
fn=self.perform_inference, | |
inputs=[ | |
img_path, | |
model_id, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_numpy], | |
) | |
gr.Examples( | |
examples=[ | |
["cow.jpeg", "gelan-e.pt", 640, 0.4, 0.5], | |
["techengue_GTA.png", "yolov9-c.pt", 640, 0.4, 0.5], | |
], | |
fn=self.perform_inference, | |
inputs=[ | |
img_path, | |
model_id, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_numpy], | |
cache_examples=True, | |
) | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
Expound further notions regarding this topic at: | |
https://doi.org/10.48550/arXiv.2402.13616 | |
""" | |
) | |
gradio_app.launch(debug=True) | |
# Instantiate the class and launch the Gradio app | |
yolo_inference = Inference_Nascent_Spawning_Deriving_From_YOLOv9() | |
yolo_inference.launch_gradio_app() |