YOLOv9 / app.py
TroglodyteDerivations's picture
Updated line 21 with: self.model = yolov9.load(self.model_path, device="cpu") # Inference generated from CPU (And a # on line 22)
bdc8c91 verified
import gradio as gr
from huggingface_hub import hf_hub_download
import yolov9
class Inference_Nascent_Spawning_Deriving_From_YOLOv9:
def __init__(self):
self.model = None
self.model_path = None
self.image_size = None
self.conf_threshold = None
self.iou_threshold = None
# Object behavior / Method -> 1
def download_models(self, model_id):
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
# Object behavior / Method -> 2
def load_model(self, model_id):
self.model_path = self.download_models(model_id)
self.model = yolov9.load(self.model_path, device="cpu") # Inference generated from CPU
#self.model = yolov9.load(self.model_path, device="cuda:0")
# Object behavior / Method -> 3
def configure_model(self, conf_threshold, iou_threshold):
self.conf_threshold = conf_threshold
self.iou_threshold = iou_threshold
self.model.conf = self.conf_threshold
self.model.iou = self.iou_threshold
# Object behavior / Method -> 4
def perform_inference(self, img_path,model_id,image_size, conf_threshold, iou_threshold):
self.image_size = image_size
self.load_model(model_id) # Load the model before performing inference
self.configure_model(conf_threshold, iou_threshold)
results = self.model(img_path, size=self.image_size)
output = results.render()
return output[0]
# Object behavior / Method -> 5
# Note: 5 is a method deriving from within the class with the name
# Inference_Nascent_Spawning_Deriving_From_YOLOv9
# One can also declare outside of the OOP as a function, which in turn,
# calls the methods inside of the OOP leveraging the functionality
# fostering from each unique Object behavior / Method
# Personal preference -> This instantiation from within OOP
def launch_gradio_app(self):
with gr.Blocks() as gradio_app:
with gr.Row():
with gr.Column():
img_path = gr.Image(type='filepath', label='Image')
model_id = gr.Dropdown(
label="Model",
choices=[
"gelan-c.pt",
"gelan-e.pt",
"yolov9-c.pt",
"yolov9-e.pt",
],
value="gelan-e.pt",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640, # Default value of 640 foments higher percentage obverse the image detection
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.4,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.5,
)
yolov9_infer = gr.Button(value="Inference")
with gr.Column():
output_numpy = gr.Image(type="numpy", label="Output")
# yolov9_infer leveraging click functionality
# Resembles iface = gr.Interface(
#fn=...
#inputs=[],
#outputs=[],
yolov9_infer.click(
fn=self.perform_inference,
inputs=[
img_path,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_numpy],
)
gr.Examples(
examples=[
["cow.jpeg", "gelan-e.pt", 640, 0.4, 0.5],
["techengue_GTA.png", "yolov9-c.pt", 640, 0.4, 0.5],
],
fn=self.perform_inference,
inputs=[
img_path,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_numpy],
cache_examples=True,
)
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
</h1>
"""
)
gr.HTML(
"""
<h3 style='text-align: center'>
Expound further notions regarding this topic at:
https://doi.org/10.48550/arXiv.2402.13616
"""
)
gradio_app.launch(debug=True)
# Instantiate the class and launch the Gradio app
yolo_inference = Inference_Nascent_Spawning_Deriving_From_YOLOv9()
yolo_inference.launch_gradio_app()