TroglodyteDerivations commited on
Commit
313732c
1 Parent(s): 407e2da

Update 79,81,83,85,87,89,91,93,95,97,99,101,103,105 with: st.write(“### Formulations “) | st.write(“”)

Browse files
Files changed (1) hide show
  1. app.py +22 -8
app.py CHANGED
@@ -76,19 +76,33 @@ def main():
76
  st.write("Two rhinos initially 1600 m apart, begin running directly toward one another at the same time. One rhino uniformly accelerates from rest at 1/8 m.s^2, while the other rhino runs with a constant speed of 15 m/s. What is the net displacement of each rhino when they meet?")
77
 
78
  if st.button("Formulations Required For Solving Problem"):
79
- st.latex(r'Accelerating rhino: s_1(t) = \frac{1}{2}at^2')
80
- st.latex(r'Constant speed rhino: s_2(t) = vt')
81
- st.latex(r'Total Distance Covered by both rhinos: 1600 meters')
82
- st.latex(r'Utilize form ax^2 + bx + c = 0')
 
 
 
 
 
83
  st.latex(r'a = \frac{1}{2}\frac{1}{16}t^2')
 
84
  st.latex(r'b = 15 m/s')
 
85
  st.latex(r'\frac{1}{16}t^2 + 15t = 1600')
 
86
  st.latex(r'c= -1600')
 
87
  st.latex(r'\Delta = b^2 - 4ac = 15^2 - 4\frac{1}{16}1600 = 225 + 400 = 625')
88
- st.latex(r'Solve for t: t = \frac{-15+-\sqrt(625)}{\frac{1}{8}} = \frac{-15 +- 25}{\frac{1}{8}}')
89
- st.latex(r'Positive solution: t = \frac{10}{\frac{1}{8}} = 80 seconds')
90
- st.latex(r'Accelerating rhino s_1(t) = s_1(80) = \frac{1}{2}\frac{1}{8}80^2 = \frac{1}{16}6400 = 400 meters')
91
- st.latex(r'Constant speed rhino s_2(t) = s_2(80) = 15 * 80 = 1200 meters')
 
 
 
 
 
92
 
93
  if st.button("Calculate"):
94
  calc_meeting_time = CalculateMeetingTime()
 
76
  st.write("Two rhinos initially 1600 m apart, begin running directly toward one another at the same time. One rhino uniformly accelerates from rest at 1/8 m.s^2, while the other rhino runs with a constant speed of 15 m/s. What is the net displacement of each rhino when they meet?")
77
 
78
  if st.button("Formulations Required For Solving Problem"):
79
+ st.write("### Formulations")
80
+ st.latex(r'Accelerating_rhino: s_1(t) = \frac{1}{2}at^2')
81
+ st.write("")
82
+ st.latex(r'Constant_speed_rhino: s_2(t) = vt')
83
+ st.write("")
84
+ st.latex(r'Total_Distance_Covered_by_both_rhinos: 1600 meters')
85
+ st.write("")
86
+ st.latex(r'Utilize_form: ax^2 + bx + c = 0')
87
+ st.write("")
88
  st.latex(r'a = \frac{1}{2}\frac{1}{16}t^2')
89
+ st.write("")
90
  st.latex(r'b = 15 m/s')
91
+ st.write("")
92
  st.latex(r'\frac{1}{16}t^2 + 15t = 1600')
93
+ st.write("")
94
  st.latex(r'c= -1600')
95
+ st.write("")
96
  st.latex(r'\Delta = b^2 - 4ac = 15^2 - 4\frac{1}{16}1600 = 225 + 400 = 625')
97
+ st.write("")
98
+ st.latex(r'Solve_for_t: t = \frac{-15+-\sqrt(625)}{\frac{1}{8}} = \frac{-15 +- 25}{\frac{1}{8}}')
99
+ st.write("")
100
+ st.latex(r'Positive_solution: t = \frac{10}{\frac{1}{8}} = 80 seconds')
101
+ st.write("")
102
+ st.latex(r'Accelerating_rhino s_1(t) = s_1(80) = \frac{1}{2}\frac{1}{8}80^2 = \frac{1}{16}6400 = 400 meters')
103
+ st.write("")
104
+ st.latex(r'Constant_speed_rhino s_2(t) = s_2(80) = 15 * 80 = 1200 meters')
105
+ st.write("")
106
 
107
  if st.button("Calculate"):
108
  calc_meeting_time = CalculateMeetingTime()