TroglodyteDerivations
commited on
Commit
•
a13d33d
1
Parent(s):
daa9a67
Updated lines 490-515 with: def optimize(npart, ndim, max_iter): # Initialize the GWO algorithm with the provided parameters gwo = GWO(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=init, bounds=bounds) best_positions, best_fitness, contour_plot = gwo.optimize() # Convert best_fitness and best_positions to NumPy arrays if necessary best_fitness_npy = np.array(best_fitness) best_positions_npy = np.array(best_positions) # Calculate dispersion dispersion = gwo.Dispersion() dispersion_text = f"Dispersion: {dispersion}" # Plot the dispersion over time dispersion_plot = gwo.plot_dispersion() # Plot the dispersion heatmap dispersion_heatmap_plot = gwo.plot_dispersion_heatmap(x_range=(-6,6), y_range=(-6,6)) # Format the output strings best_fitness_text = f"Best Fitness: {best_fitness_npy}" best_positions_text = f"Best Positions: {best_positions_npy}" # Return the images and text return [contour_plot, dispersion_plot, dispersion_heatmap_plot], best_fitness_text, best_positions_text, best_fitness_npy, best_positions_npy, dispersion_text
Browse files
app.py
CHANGED
@@ -488,11 +488,10 @@ class GWO:
|
|
488 |
|
489 |
|
490 |
def optimize(npart, ndim, max_iter):
|
491 |
-
|
492 |
# Initialize the GWO algorithm with the provided parameters
|
493 |
gwo = GWO(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=init, bounds=bounds)
|
494 |
|
495 |
-
best_positions, best_fitness = gwo.optimize()
|
496 |
|
497 |
# Convert best_fitness and best_positions to NumPy arrays if necessary
|
498 |
best_fitness_npy = np.array(best_fitness)
|
@@ -502,19 +501,12 @@ def optimize(npart, ndim, max_iter):
|
|
502 |
dispersion = gwo.Dispersion()
|
503 |
dispersion_text = f"Dispersion: {dispersion}"
|
504 |
|
505 |
-
# Get the contour plot as a PIL Image
|
506 |
-
contour_plot = gwo.plot_contour_and_wolves(best_positions_array)
|
507 |
-
|
508 |
# Plot the dispersion over time
|
509 |
dispersion_plot = gwo.plot_dispersion()
|
510 |
|
511 |
# Plot the dispersion heatmap
|
512 |
dispersion_heatmap_plot = gwo.plot_dispersion_heatmap(x_range=(-6,6), y_range=(-6,6))
|
513 |
|
514 |
-
# Load the best fitness and positions from .npy files
|
515 |
-
best_fitness_npy = np.load('best_fitness.npy')
|
516 |
-
best_positions_npy = np.load('best_positions.npy')
|
517 |
-
|
518 |
# Format the output strings
|
519 |
best_fitness_text = f"Best Fitness: {best_fitness_npy}"
|
520 |
best_positions_text = f"Best Positions: {best_positions_npy}"
|
|
|
488 |
|
489 |
|
490 |
def optimize(npart, ndim, max_iter):
|
|
|
491 |
# Initialize the GWO algorithm with the provided parameters
|
492 |
gwo = GWO(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=init, bounds=bounds)
|
493 |
|
494 |
+
best_positions, best_fitness, contour_plot = gwo.optimize()
|
495 |
|
496 |
# Convert best_fitness and best_positions to NumPy arrays if necessary
|
497 |
best_fitness_npy = np.array(best_fitness)
|
|
|
501 |
dispersion = gwo.Dispersion()
|
502 |
dispersion_text = f"Dispersion: {dispersion}"
|
503 |
|
|
|
|
|
|
|
504 |
# Plot the dispersion over time
|
505 |
dispersion_plot = gwo.plot_dispersion()
|
506 |
|
507 |
# Plot the dispersion heatmap
|
508 |
dispersion_heatmap_plot = gwo.plot_dispersion_heatmap(x_range=(-6,6), y_range=(-6,6))
|
509 |
|
|
|
|
|
|
|
|
|
510 |
# Format the output strings
|
511 |
best_fitness_text = f"Best Fitness: {best_fitness_npy}"
|
512 |
best_positions_text = f"Best Positions: {best_positions_npy}"
|