TroglodyteDerivations's picture
Added: [notation] with: # (55005 - 12271) / 55005 = 0.78%
468cc88 verified
import streamlit as st
import numpy as np
import pickle
from tensorflow.keras.models import load_model
# Load the model
@st.cache_resource()
def load_h5_model(model_path):
return load_model(model_path)
# Load the data
@st.cache_resource()
def load_npy_data(data_path):
return np.load(data_path)
# Load the pickle file
@st.cache_resource()
def load_pkl_file(pkl_path):
with open(pkl_path, 'rb') as f:
return pickle.load(f)
# Streamlit app
def main():
st.title("Breast Cancer Detection Model Evaluation")
# Load the model
model = load_h5_model('CNN_model.h5')
# Load the data
X_test = load_npy_data('X_test.npy')
y_test = load_npy_data('y_test.npy')
# Load the accuracy from accuracy_epoch_5000.pkl
loaded_correct_predictions, loaded_correct_indices = load_pkl_file('accuracy_epoch_5000.pkl')
# Load the history from history.pkl
history = load_pkl_file('history.pkl')
# Display the shapes of X_test and y_test
st.write("X_test shape:", X_test.shape)
st.write("y_test shape:", y_test.shape)
# Display the model summary (utilize st.text not st.write)
st.write("CNN_model.h5 Summary")
st.text(model.summary())
# Display the loaded accuracy results
st.write("accuracy_epoch_5000 results:")
st.write("Loaded Correct Predictions:", loaded_correct_predictions)
st.write("Loaded Correct Indices:", loaded_correct_indices)
# Display the model accuracy from history
# (55005 - 12171) / 55005 = 0.78 %
# Adding rest of epochs from 55005 images
# Then, drawing inference on how close
# in proximity the Accuracy and History pickle file are
# The history pickle file is
st.write("Breast Cancer Detection Model Accuracy deriving from history:")
if 'accuracy' in history:
st.line_chart(history['accuracy'])
else:
st.write("No accuracy data available in history.")
if __name__ == "__main__":
main()