Updated lines 55-58 with: TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/
4800ad0
verified
import streamlit as st | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import matplotlib.pyplot as plt | |
# Disable the PyplotGlobalUseWarning | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
# Load the model | |
model = load_model('brain_tumor_model.keras') | |
# Class mappings | |
class_mappings = { | |
'Glioma': 0, | |
'Meningioma': 1, | |
'Notumor': 2, | |
'Pituitary': 3 | |
} | |
inv_class_mappings = {v: k for k, v in class_mappings.items()} | |
class_names = list(class_mappings.keys()) | |
# Load the true and predicted labels | |
true_labels = np.load('true_labels.npy') # Model trained on Brain Tumor MRI Dataset | |
predicted_labels = np.load('predicted_labels.npy') # Model foments predictions based upon the training/testing of the Brain Tumor MRI Dataset | |
# Note0: The One Hot Encode Predictions are leveraging the TF CNN Model's training/testing of the Brain Tumor MRI Dataset | |
# Note1: The One Hot Encode Predictions are deriving from another dataset -> Crystal Clean: Brain Tumors MRI Dataset | |
# Function to load and preprocess an image | |
def load_and_preprocess_image(image_path, image_shape=(168, 168)): | |
img = image.load_img(image_path, target_size=image_shape, color_mode='grayscale') | |
img_array = image.img_to_array(img) / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
# Function to display a row of images with predictions | |
def display_images_and_predictions(image_paths, predictions, true_labels, figsize=(20, 5)): | |
fig, axes = plt.subplots(1, len(image_paths), figsize=figsize) | |
for i, (image_path, prediction, true_label) in enumerate(zip(image_paths, predictions, true_labels)): | |
ax = axes[i] | |
img_array = load_and_preprocess_image(image_path) | |
img_array = np.squeeze(img_array) | |
ax.imshow(img_array, cmap='gray') | |
title_color = 'green' if prediction == true_label else 'red' | |
ax.set_title(f'True Label: {true_label}\nPred: {prediction}', color=title_color) | |
ax.axis('off') | |
st.pyplot(fig) | |
# Image paths | |
image_paths = [ | |
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Normal/N_1.jpg', | |
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Glioma Tumor/G_1.jpg', | |
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Meningioma Tumor/M_1.jpg', | |
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Pituitary Tumor/P_1.jpg' | |
] | |
# True labels for images | |
true_labels = ['Notumor', 'Glioma', 'Meningioma', 'Pituitary'] | |
# Load and preprocess images, then make predictions | |
images = [load_and_preprocess_image(path) for path in image_paths] | |
predictions = [model.predict(image) for image in images] | |
# Determine the predicted labels | |
predicted_labels = [inv_class_mappings[np.argmax(one_hot)] for one_hot in predictions] | |
# Create Streamlit app title | |
st.markdown("<h1 style='text-align: center; color: navy;'>Brain Tumor One Hot Encode TF Model</h1>", unsafe_allow_html=True) | |
# Output the predictions | |
st.write(f'Class Mappings: {class_mappings}') | |
st.write("\nNormal Image Prediction:", np.round(predictions[0], 3)[0]) | |
st.write("Glioma Image Prediction:", np.round(predictions[1], 3)[0]) | |
st.write("Meningioma Image Prediction:", np.round(predictions[2], 3)[0]) | |
st.write("Pituitary Image Prediction:", np.round(predictions[3], 3)[0]) | |
# Display images with predictions | |
display_images_and_predictions(image_paths, predicted_labels, true_labels) |