TroglodyteDerivations's picture
Updated lines 55-58 with: TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/
4800ad0 verified
raw
history blame
3.44 kB
import streamlit as st
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
# Disable the PyplotGlobalUseWarning
st.set_option('deprecation.showPyplotGlobalUse', False)
# Load the model
model = load_model('brain_tumor_model.keras')
# Class mappings
class_mappings = {
'Glioma': 0,
'Meningioma': 1,
'Notumor': 2,
'Pituitary': 3
}
inv_class_mappings = {v: k for k, v in class_mappings.items()}
class_names = list(class_mappings.keys())
# Load the true and predicted labels
true_labels = np.load('true_labels.npy') # Model trained on Brain Tumor MRI Dataset
predicted_labels = np.load('predicted_labels.npy') # Model foments predictions based upon the training/testing of the Brain Tumor MRI Dataset
# Note0: The One Hot Encode Predictions are leveraging the TF CNN Model's training/testing of the Brain Tumor MRI Dataset
# Note1: The One Hot Encode Predictions are deriving from another dataset -> Crystal Clean: Brain Tumors MRI Dataset
# Function to load and preprocess an image
def load_and_preprocess_image(image_path, image_shape=(168, 168)):
img = image.load_img(image_path, target_size=image_shape, color_mode='grayscale')
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
# Function to display a row of images with predictions
def display_images_and_predictions(image_paths, predictions, true_labels, figsize=(20, 5)):
fig, axes = plt.subplots(1, len(image_paths), figsize=figsize)
for i, (image_path, prediction, true_label) in enumerate(zip(image_paths, predictions, true_labels)):
ax = axes[i]
img_array = load_and_preprocess_image(image_path)
img_array = np.squeeze(img_array)
ax.imshow(img_array, cmap='gray')
title_color = 'green' if prediction == true_label else 'red'
ax.set_title(f'True Label: {true_label}\nPred: {prediction}', color=title_color)
ax.axis('off')
st.pyplot(fig)
# Image paths
image_paths = [
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Normal/N_1.jpg',
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Glioma Tumor/G_1.jpg',
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Meningioma Tumor/M_1.jpg',
'TroglodyteDerivations/Brain_Tumor_One_Hot_Encode_TF_Model/Pituitary Tumor/P_1.jpg'
]
# True labels for images
true_labels = ['Notumor', 'Glioma', 'Meningioma', 'Pituitary']
# Load and preprocess images, then make predictions
images = [load_and_preprocess_image(path) for path in image_paths]
predictions = [model.predict(image) for image in images]
# Determine the predicted labels
predicted_labels = [inv_class_mappings[np.argmax(one_hot)] for one_hot in predictions]
# Create Streamlit app title
st.markdown("<h1 style='text-align: center; color: navy;'>Brain Tumor One Hot Encode TF Model</h1>", unsafe_allow_html=True)
# Output the predictions
st.write(f'Class Mappings: {class_mappings}')
st.write("\nNormal Image Prediction:", np.round(predictions[0], 3)[0])
st.write("Glioma Image Prediction:", np.round(predictions[1], 3)[0])
st.write("Meningioma Image Prediction:", np.round(predictions[2], 3)[0])
st.write("Pituitary Image Prediction:", np.round(predictions[3], 3)[0])
# Display images with predictions
display_images_and_predictions(image_paths, predicted_labels, true_labels)