Spaces:
Sleeping
Sleeping
| import logging | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 # Ensure OpenCV is installed | |
| # Set up logging configuration | |
| logging.basicConfig(level=logging.INFO, filename='image_processing.log', filemode='a') | |
| def load_image(image_path): | |
| """Load an image from the specified path.""" | |
| try: | |
| image = Image.open(image_path) | |
| logging.info(f"Image loaded successfully from {image_path}.") | |
| return image | |
| except Exception as e: | |
| logging.error(f"Failed to load image from {image_path}: {e}") | |
| return None | |
| def preprocess_image(image, target_size=(640, 640)): | |
| """Preprocess the image for YOLO model.""" | |
| try: | |
| # Resize and convert to RGB | |
| image = image.resize(target_size) | |
| image = image.convert("RGB") | |
| logging.info(f"Image preprocessed to size {target_size}.") | |
| return np.array(image) / 255.0 # Normalize to [0, 1] | |
| except Exception as e: | |
| logging.error(f"Error in preprocessing image: {e}") | |
| return None | |
| def draw_bounding_boxes(image, detections): | |
| """Draw bounding boxes on the image based on YOLO detections.""" | |
| try: | |
| image = np.array(image) | |
| for detection in detections: | |
| x1, y1, x2, y2 = map(int, detection['coordinates']) # Ensure coordinates are integers | |
| label = detection.get('name', 'Unknown') | |
| color = (255, 0, 0) # Red color for bounding boxes | |
| # Draw rectangle | |
| cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) | |
| # Draw label | |
| cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
| logging.info("Bounding boxes drawn on the image.") | |
| return Image.fromarray(image) | |
| except Exception as e: | |
| logging.error(f"Error in drawing bounding boxes: {e}") | |
| return image | |
| def format_detection_output(detections): | |
| """Format the YOLO detection output for reporting.""" | |
| formatted_detections = [] | |
| for detection in detections: | |
| formatted_detection = { | |
| "name": detection.get("name", "Unknown"), | |
| "class": detection.get("class", "Unknown"), | |
| "confidence": round(detection.get("confidence", 0.0), 2), | |
| "coordinates": detection.get("coordinates", []) | |
| } | |
| formatted_detections.append(formatted_detection) | |
| logging.info("Detection output formatted successfully.") | |
| return formatted_detections | |