Spaces:
Sleeping
Sleeping
TrishanuDas
commited on
Commit
•
14b32f8
1
Parent(s):
5660235
minor fixes
Browse files
README.md
CHANGED
@@ -36,6 +36,6 @@ The following files are present in this repository:
|
|
36 |
|
37 |
- `app.py`: The main Streamlit app file to run directly.
|
38 |
- `requirements.txt`: The list of Python dependencies required by the app.
|
39 |
-
- `model.py`: Contains the code for loading and using the
|
40 |
-
- `app_endpoint.py`: Contains
|
41 |
- `app_with_fastapi.py`: Contains the code for the Streamlit app with FastAPI endpoint.
|
|
|
36 |
|
37 |
- `app.py`: The main Streamlit app file to run directly.
|
38 |
- `requirements.txt`: The list of Python dependencies required by the app.
|
39 |
+
- `model.py`: Contains the code for loading and using the model.
|
40 |
+
- `app_endpoint.py`: Contains FASTAPI endpoint for the prediction.
|
41 |
- `app_with_fastapi.py`: Contains the code for the Streamlit app with FastAPI endpoint.
|
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
from PIL import Image
|
2 |
import streamlit as st
|
3 |
-
import requests
|
4 |
import model
|
5 |
|
6 |
-
|
7 |
st.title("CIFAR10 Prediction")
|
8 |
|
9 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
1 |
from PIL import Image
|
2 |
import streamlit as st
|
|
|
3 |
import model
|
4 |
|
5 |
+
|
6 |
st.title("CIFAR10 Prediction")
|
7 |
|
8 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
app_with_fastapi.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import requests
|
2 |
import streamlit as st
|
3 |
|
4 |
-
# Streamlit layout
|
5 |
st.title("CIFAR10 Prediction")
|
6 |
|
7 |
HOST = "http://localhost:8000"
|
|
|
1 |
import requests
|
2 |
import streamlit as st
|
3 |
|
|
|
4 |
st.title("CIFAR10 Prediction")
|
5 |
|
6 |
HOST = "http://localhost:8000"
|
model.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
2 |
import torch
|
3 |
|
|
|
4 |
processor = AutoImageProcessor.from_pretrained("heyitskim1912/AML_A2_Q4")
|
5 |
model = AutoModelForImageClassification.from_pretrained("heyitskim1912/AML_A2_Q4")
|
6 |
|
7 |
def predict(image_pil):
|
8 |
inputs = processor(image_pil, return_tensors="pt")
|
9 |
|
|
|
10 |
with torch.no_grad():
|
11 |
logits = model(**inputs).logits
|
12 |
|
|
|
1 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
2 |
import torch
|
3 |
|
4 |
+
# Loading processor and model
|
5 |
processor = AutoImageProcessor.from_pretrained("heyitskim1912/AML_A2_Q4")
|
6 |
model = AutoModelForImageClassification.from_pretrained("heyitskim1912/AML_A2_Q4")
|
7 |
|
8 |
def predict(image_pil):
|
9 |
inputs = processor(image_pil, return_tensors="pt")
|
10 |
|
11 |
+
#Inference
|
12 |
with torch.no_grad():
|
13 |
logits = model(**inputs).logits
|
14 |
|