TrishanuDas commited on
Commit
14b32f8
1 Parent(s): 5660235

minor fixes

Browse files
Files changed (4) hide show
  1. README.md +2 -2
  2. app.py +1 -2
  3. app_with_fastapi.py +0 -1
  4. model.py +2 -0
README.md CHANGED
@@ -36,6 +36,6 @@ The following files are present in this repository:
36
 
37
  - `app.py`: The main Streamlit app file to run directly.
38
  - `requirements.txt`: The list of Python dependencies required by the app.
39
- - `model.py`: Contains the code for loading and using the pre-trained model.
40
- - `app_endpoint.py`: Contains api_endpoint for the prediction.
41
  - `app_with_fastapi.py`: Contains the code for the Streamlit app with FastAPI endpoint.
 
36
 
37
  - `app.py`: The main Streamlit app file to run directly.
38
  - `requirements.txt`: The list of Python dependencies required by the app.
39
+ - `model.py`: Contains the code for loading and using the model.
40
+ - `app_endpoint.py`: Contains FASTAPI endpoint for the prediction.
41
  - `app_with_fastapi.py`: Contains the code for the Streamlit app with FastAPI endpoint.
app.py CHANGED
@@ -1,9 +1,8 @@
1
  from PIL import Image
2
  import streamlit as st
3
- import requests
4
  import model
5
 
6
- # Streamlit layout
7
  st.title("CIFAR10 Prediction")
8
 
9
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
 
1
  from PIL import Image
2
  import streamlit as st
 
3
  import model
4
 
5
+
6
  st.title("CIFAR10 Prediction")
7
 
8
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
app_with_fastapi.py CHANGED
@@ -1,7 +1,6 @@
1
  import requests
2
  import streamlit as st
3
 
4
- # Streamlit layout
5
  st.title("CIFAR10 Prediction")
6
 
7
  HOST = "http://localhost:8000"
 
1
  import requests
2
  import streamlit as st
3
 
 
4
  st.title("CIFAR10 Prediction")
5
 
6
  HOST = "http://localhost:8000"
model.py CHANGED
@@ -1,12 +1,14 @@
1
  from transformers import AutoImageProcessor, AutoModelForImageClassification
2
  import torch
3
 
 
4
  processor = AutoImageProcessor.from_pretrained("heyitskim1912/AML_A2_Q4")
5
  model = AutoModelForImageClassification.from_pretrained("heyitskim1912/AML_A2_Q4")
6
 
7
  def predict(image_pil):
8
  inputs = processor(image_pil, return_tensors="pt")
9
 
 
10
  with torch.no_grad():
11
  logits = model(**inputs).logits
12
 
 
1
  from transformers import AutoImageProcessor, AutoModelForImageClassification
2
  import torch
3
 
4
+ # Loading processor and model
5
  processor = AutoImageProcessor.from_pretrained("heyitskim1912/AML_A2_Q4")
6
  model = AutoModelForImageClassification.from_pretrained("heyitskim1912/AML_A2_Q4")
7
 
8
  def predict(image_pil):
9
  inputs = processor(image_pil, return_tensors="pt")
10
 
11
+ #Inference
12
  with torch.no_grad():
13
  logits = model(**inputs).logits
14