Spaces:
Build error
Build error
SefyanKehail
commited on
Commit
·
d6783ca
1
Parent(s):
012f016
epochs test
Browse files
app.py
CHANGED
|
@@ -1,14 +1,52 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
@spaces.GPU
|
| 9 |
-
def
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
demo.
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from torchvision import datasets, transforms
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
|
| 9 |
+
class SimpleNet(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super(SimpleNet, self).__init__()
|
| 12 |
+
self.fc = nn.Linear(784, 10) # Simple model for MNIST
|
| 13 |
+
|
| 14 |
+
def forward(self, x):
|
| 15 |
+
x = x.view(-1, 784) # Flatten the image
|
| 16 |
+
x = self.fc(x)
|
| 17 |
+
return x
|
| 18 |
|
| 19 |
@spaces.GPU
|
| 20 |
+
def train_model(epochs):
|
| 21 |
+
# Load MNIST dataset
|
| 22 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
| 23 |
+
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 24 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 25 |
+
|
| 26 |
+
# Model, loss, and optimizer
|
| 27 |
+
model = SimpleNet().cuda()
|
| 28 |
+
criterion = nn.CrossEntropyLoss()
|
| 29 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 30 |
+
|
| 31 |
+
# Training loop
|
| 32 |
+
for epoch in range(epochs):
|
| 33 |
+
model.train()
|
| 34 |
+
running_loss = 0.0
|
| 35 |
+
for data, target in train_loader:
|
| 36 |
+
data, target = data.cuda(), target.cuda()
|
| 37 |
+
optimizer.zero_grad()
|
| 38 |
+
output = model(data)
|
| 39 |
+
loss = criterion(output, target)
|
| 40 |
+
loss.backward()
|
| 41 |
+
optimizer.step()
|
| 42 |
+
running_loss += loss.item()
|
| 43 |
+
|
| 44 |
+
print(f"Epoch {epoch + 1}, Average Loss: {running_loss / len(train_loader)}")
|
| 45 |
+
|
| 46 |
+
# Save the model checkpoint
|
| 47 |
+
torch.save(model.state_dict(), "simple_net.pth")
|
| 48 |
+
return "Training completed and model saved."
|
| 49 |
|
| 50 |
+
# Define the Gradio interface
|
| 51 |
+
demo = gr.Interface(fn=train_model, inputs=gr.Slider(1, 5, step=1, default=1, label="Number of Epochs"), outputs="text")
|
| 52 |
+
demo.launch()
|