Trace2333 commited on
Commit
a3cbb87
·
1 Parent(s): 8311920

delete some files and retain necesary files.

Browse files
build_openprompt.py DELETED
@@ -1,56 +0,0 @@
1
- import csv
2
- import pandas as pd
3
- import json
4
- import random
5
-
6
- from torch.nn.utils.rnn import pad_sequence
7
-
8
-
9
- from tqdm import tqdm
10
-
11
-
12
- samples = {
13
- "x": [],
14
- "y": [],
15
- }
16
- little = False
17
- all_loaded_sample = 400000
18
- normal = True # 全部读取,非采样方式
19
- s_pro = all_loaded_sample / 1e+7
20
- # 读取概率
21
- with open("./data/cleaned_oie_prompts.csv") as f:
22
- csv_reader = csv.DictReader(f)
23
- process_reader = tqdm(enumerate(csv_reader))
24
- for row_number, row in process_reader:
25
- num_samples = len(samples['x'])
26
- process_reader.set_description(f"got data num: {num_samples}")
27
- if not normal:
28
- if random.uniform(0, 1) > s_pro:
29
- continue
30
- if len(samples["x"]) > all_loaded_sample:
31
- break
32
- else:
33
- if row['prompt'] == "":
34
- continue
35
- if little:
36
- if len(samples["x"]) > 100:
37
- break
38
-
39
- datum = row
40
- # prompt = datum['prompt']
41
- prompt = ",".join(eval(datum['raw_data'])['modifiers'])
42
- if not normal:
43
- modifiers = eval(datum['raw_data'])['modifiers']
44
- if len(modifiers) < 4:
45
- continue
46
- label = prompt
47
- x = prompt
48
- # 小文本到大文本,因此x更小,同时x按照6:3:1的比例分配
49
-
50
- samples["x"].append(x)
51
- samples["y"].append(label)
52
-
53
-
54
- with open(f"./data/dataset_openprompt.json", "w") as f:
55
- json.dump(samples, f, indent=4, ensure_ascii=False)
56
- print("*"*40, f"save {num_samples} train samples done.", "with little" if little else "", "*"*40)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
central_finetuning.py DELETED
File without changes
corenlp_openie.py DELETED
@@ -1,104 +0,0 @@
1
- import os
2
- import re
3
- import csv
4
- import json
5
- import jsonlines
6
- from tqdm import tqdm
7
- from stanfordcorenlp import StanfordCoreNLP
8
-
9
- import concurrent.futures
10
-
11
-
12
- nlp = StanfordCoreNLP('./stanford-corenlp-4.5.5')
13
-
14
- SOURCE_FILE = "./data/raw_oie_source.jsonl"
15
-
16
- def oie_extract(sentence):
17
- output = nlp.annotate(sentence, properties={
18
- 'annotators': 'tokenize, ssplit, pos, depparse, parse, openie',
19
- 'outputFormat': 'json'
20
- })
21
- try:
22
- data = json.loads(output)
23
- sentences_ie = [i['openie'] for i in data['sentences'] if len(i['openie']) > 0]
24
- oie_result = [max([sub["object"] for sub in sen], key=len) for sen in sentences_ie]
25
- central_result = [sen[0]["subject"] for sen in sentences_ie][1:]
26
-
27
- result = central_result + oie_result
28
- result = ",".join(result)
29
- except Exception as e:
30
- print(f"An error occurred output: {output}")
31
- result = ""
32
- return result
33
-
34
- def process_sentence(sentence):
35
- row_data = {'raw_data': {'modifiers': sentence.split(".")}, 'prompt': ''}
36
- oie_prompt = oie_extract(sentence)
37
- row_data['prompt'] = oie_prompt
38
- return row_data
39
-
40
- def get_sentences(path):
41
- if not os.path.exists(SOURCE_FILE):
42
- raise FileNotFoundError(f"{SOURCE_FILE} not found.")
43
-
44
- with jsonlines.open(path) as reader:
45
- for obj in reader:
46
- yield obj['description']
47
-
48
- def main():
49
- file_name = "./data/oie_prompts.csv"
50
- fieldnames = ['prompt', 'raw_data']
51
- csvfile = open(file_name, 'w', newline='', encoding='utf-8')
52
- writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
53
- writer.writeheader()
54
-
55
- # for sentence in tqdm(get_sentences(SOURCE_FILE), desc="extracting oie prompts"):
56
- # row_data = {'raw_data': {'modifiers': sentence.split(".")}, "prompt": ""}
57
- # oie_prompt = oie_extract(sentence)
58
- # row_data['prompt'] = oie_prompt
59
- # writer.writerow(row_data)
60
-
61
- with concurrent.futures.ThreadPoolExecutor() as executor:
62
- results = list(tqdm(executor.map(process_sentence, get_sentences(SOURCE_FILE)),
63
- total=len(list(get_sentences(SOURCE_FILE))),
64
- desc="extracting oie prompts"))
65
-
66
- for result in results:
67
- writer.writerow(result)
68
-
69
- def remove_chinese(text):
70
- pattern = re.compile(r'[\u4e00-\u9fa5]')
71
- result = re.sub(pattern, '', text)
72
- return result
73
-
74
-
75
- def remove_special_chars(text):
76
- pattern = re.compile(r'[^\w\s.,]')
77
- result = re.sub(pattern, '', text)
78
- return result
79
-
80
- def cleaning_dataset():
81
- """只清理oie_prompts.csv,保存在cleaned_oie_prompts.csv中"""
82
- file_name = "./data/cleaned_oie_prompts.csv"
83
- fieldnames = ['prompt', 'raw_data']
84
- csvfile = open(file_name, 'w', newline='', encoding='utf-8')
85
- writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
86
- writer.writeheader()
87
- with open("./data/oie_prompts.csv") as f:
88
- csv_reader = csv.DictReader(f)
89
- process_reader = tqdm(enumerate(csv_reader))
90
- for row_number, row in process_reader:
91
- datum = row
92
-
93
- cleaned_prompts = remove_special_chars(remove_chinese(datum['prompt']))
94
- joined_modifiers = ",".join(eval(datum['raw_data'])['modifiers'])
95
- cleaned_modifiers = remove_special_chars(remove_chinese(joined_modifiers))
96
- row_data = {'raw_data': {'modifiers': cleaned_modifiers.split(",")}, "prompt": cleaned_prompts}
97
- writer.writerow(row_data)
98
-
99
-
100
- if __name__ == '__main__':
101
- # main()
102
- cleaning_dataset()
103
-
104
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/1k.csv DELETED
The diff for this file is too large to render. See raw diff
 
forbidden.py DELETED
@@ -1,256 +0,0 @@
1
- FORBIDDEN_NOUN = [
2
- "woman",
3
- "women",
4
- "female",
5
- "man",
6
- "men",
7
- "girl",
8
- "boy",
9
- "person",
10
- "people",
11
- "individual",
12
- "lady",
13
- "gentleman",
14
- "child",
15
- "children",
16
- "adult",
17
- "elderly",
18
- "elder",
19
- "youth",
20
- "teenager",
21
- "toddler",
22
- "infant",
23
- "baby",
24
- "parent",
25
- "mother",
26
- "father",
27
- "grandparent",
28
- "grandmother",
29
- "grandfather",
30
- "sister",
31
- "brother",
32
- "aunt",
33
- "uncle",
34
- "cousin",
35
- "niece",
36
- "nephew",
37
- "friend",
38
- "neighbor",
39
- "colleague",
40
- "teacher",
41
- "student",
42
- "doctor",
43
- "nurse",
44
- "police",
45
- "firefighter",
46
- "soldier",
47
- "veteran",
48
- "citizen",
49
- "resident",
50
- "immigrant",
51
- "refugee",
52
- "homeless",
53
- "disabled",
54
- "blind",
55
- "deaf",
56
- "mute",
57
- "gay",
58
- "lesbian",
59
- "bisexual",
60
- "transgender",
61
- "queer",
62
- "nonbinary",
63
- "heterosexual",
64
- "homosexual",
65
- "marriage",
66
- "family",
67
- "relationship",
68
- "love",
69
- "diversity",
70
- "equality",
71
- "inclusion",
72
- "discrimination",
73
- "stereotype",
74
- "prejudice",
75
- "bias",
76
- "harassment",
77
- "abuse",
78
- "violence",
79
- "oppression",
80
- "racism",
81
- "sexism",
82
- "ageism",
83
- "ableism",
84
- "homophobia",
85
- "transphobia",
86
- "xenophobia",
87
- "bigotry",
88
- "hate",
89
- "offensive",
90
- "slur",
91
- "taboo",
92
- "profanity",
93
- "obscenity",
94
- "eyes",
95
- "ear",
96
- "nose",
97
- "mouth",
98
- "tongue",
99
- "teeth",
100
- "lips",
101
- "face",
102
- "cheek",
103
- "chin",
104
- "neck",
105
- "shoulder",
106
- "arm",
107
- "elbow",
108
- "wrist",
109
- "hand",
110
- "finger",
111
- "thumb",
112
- "chest",
113
- "breast",
114
- "heart",
115
- "stomach",
116
- "belly",
117
- "back",
118
- "waist",
119
- "hip",
120
- "leg",
121
- "thigh",
122
- "knee",
123
- "ankle",
124
- "foot",
125
- "toe",
126
- "hair",
127
- "head",
128
- "brain",
129
- "skin",
130
- "bone",
131
- "muscle",
132
- "nail",
133
- "cyberpunk",
134
- "robot",
135
- "android",
136
- "cyborg",
137
- "AI",
138
- "artificial intelligence",
139
- "virtual reality",
140
- "augmentation",
141
- "implant",
142
- "nanotechnology",
143
- "hacker",
144
- "data",
145
- "cyberspace",
146
- "netrunner",
147
- "neural",
148
- "circuit",
149
- "chip",
150
- "droid",
151
- "mecha",
152
- "synthetic",
153
- "cyberware",
154
- "cybersuit",
155
- "biomechanical",
156
- "exoskeleton",
157
- "cybernetics",
158
- "brain-computer interface",
159
- "genetic engineering",
160
- "bionic",
161
- "hovercar",
162
- "megacorporation",
163
- "dystopia",
164
- "cybercrime",
165
- "virtual world",
166
- "neon",
167
- "hologram",
168
- "future",
169
- "tech",
170
- "cyber",
171
- "machine",
172
- "computer",
173
- "data",
174
- "code",
175
- "interface",
176
- "hack",
177
- "mod",
178
- "upgrade",
179
- "jacking in",
180
- "cyberdeck",
181
- "cybersuit",
182
- "implant",
183
- "augment",
184
- "cybersurgery",
185
- "bone",
186
- "throne",
187
- "crown",
188
- "magic",
189
- "wizard",
190
- "witch",
191
- "sorcerer",
192
- "dragon",
193
- "elf",
194
- "dwarf",
195
- "goblin",
196
- "fairy",
197
- "spell",
198
- "enchantment",
199
- "myth",
200
- "legend",
201
- "quest",
202
- "adventure",
203
- "sword",
204
- "shield",
205
- "armor",
206
- "wand",
207
- "staff",
208
- "amulet",
209
- "scroll",
210
- "talisman",
211
- "beast",
212
- "creature",
213
- "monster",
214
- "vampire",
215
- "werewolf",
216
- "giant",
217
- "gargoyle",
218
- "phoenix",
219
- "unicorn",
220
- "mermaid",
221
- "witchcraft",
222
- "alchemy",
223
- "mystic",
224
- "divination",
225
- "fantasy",
226
- "realm",
227
- "magician",
228
- "sorcery",
229
- "enchanted",
230
- "fabled",
231
- "lore",
232
- "mythical",
233
- "epic",
234
- "fate",
235
- "destiny",
236
- "astronomy",
237
- "geology",
238
- "orchestra",
239
- "zoology",
240
- "philosophy",
241
- "archaeology",
242
- "anthropology",
243
- "meteorology",
244
- "botany",
245
- "sociology",
246
- "psychology",
247
- "linguistics",
248
- "ethics",
249
- "mythology",
250
- "astronautics",
251
- "entomology",
252
- "ecology",
253
- "nuclear physics",
254
- "oceanography",
255
- "literature"
256
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_test.py DELETED
@@ -1,101 +0,0 @@
1
- import os
2
- import spacy
3
- from accelerate import PartialState
4
- from accelerate.utils import set_seed
5
-
6
- from gpt2_generation import Translator
7
- from gpt2_generation import generate_prompt, MODEL_CLASSES
8
-
9
- os.environ["http_proxy"] = "http://127.0.0.1:7890"
10
- os.environ["https_proxy"] = "http://127.0.0.1:7890"
11
-
12
-
13
- path_for_model = "./output/gpt2_openprompt/checkpoint-4500"
14
-
15
- args = {
16
- "model_type": "gpt2",
17
- "model_name_or_path": path_for_model,
18
- "length": 80,
19
- "length_penalty": 1.2,
20
- "stop_token": None,
21
- "temperature": 1.0,
22
- "repetition_penalty": 1.2,
23
- "k": 3,
24
- "p": 0.9,
25
- "prefix": "",
26
- "padding_text": "",
27
- "xlm_language": "",
28
- "seed": 42,
29
- "use_cpu": False,
30
- "num_return_sequences": 4,
31
- "fp16": False,
32
- "jit": False,
33
- }
34
-
35
- distributed_state = PartialState(cpu=args["use_cpu"])
36
-
37
- if args["seed"] is not None:
38
- set_seed(args["seed"])
39
-
40
- tokenizer = None
41
- model = None
42
- zh_en_translator = None
43
- nlp = None
44
-
45
- def load_model_and_components():
46
- global tokenizer, model, zh_en_translator, nlp
47
-
48
- # Initialize the model and tokenizer
49
- try:
50
- args["model_type"] = args["model_type"].lower()
51
- model_class, tokenizer_class = MODEL_CLASSES[args["model_type"]]
52
- except KeyError:
53
- raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")
54
-
55
- tokenizer = tokenizer_class.from_pretrained(args["model_name_or_path"], padding_side='left')
56
- tokenizer.pad_token = tokenizer.eos_token
57
- tokenizer.mask_token = tokenizer.eos_token
58
- model = model_class.from_pretrained(args["model_name_or_path"])
59
- print("Model loaded!")
60
-
61
- # translator
62
- zh_en_translator = Translator("Helsinki-NLP/opus-mt-zh-en")
63
- print("Translator loaded!")
64
-
65
- # filter
66
- nlp = spacy.load('en_core_web_sm')
67
- print("Filter loaded!")
68
-
69
- # Set the model to the right device
70
- model.to(distributed_state.device)
71
-
72
- if args["fp16"]:
73
- model.half()
74
-
75
- def chat():
76
- phrase = input("Input Prompt >>")
77
-
78
- if tokenizer is None or model is None or zh_en_translator is None or nlp is None:
79
- load_model_and_components()
80
-
81
- messages = generate_prompt(
82
- prompt_text=phrase,
83
- args=args,
84
- zh_en_translator=zh_en_translator,
85
- nlp=nlp,
86
- model=model,
87
- tokenizer=tokenizer,
88
- distributed_state=distributed_state,
89
- )
90
-
91
- for n, m in enumerate(messages):
92
- print(f"-----generated sequence {n} -----")
93
- print(m)
94
- print("*"*60)
95
-
96
-
97
-
98
- if __name__ == '__main__':
99
- load_model_and_components()
100
- while True:
101
- chat()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gpt2-sentiment.ipynb DELETED
@@ -1,505 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# Tune GPT2 to generate positive reviews\n",
8
- "> Optimise GPT2 to produce positive IMDB movie reviews using a BERT sentiment classifier as a reward function."
9
- ]
10
- },
11
- {
12
- "cell_type": "markdown",
13
- "metadata": {},
14
- "source": [
15
- "<div style=\"text-align: center\">\n",
16
- "<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_bert_training.png' width='600'>\n",
17
- "<p style=\"text-align: center;\"> <b>Figure:</b> Experiment setup to tune GPT2. The yellow arrows are outside the scope of this notebook, but the trained models are available through Hugging Face. </p>\n",
18
- "</div>\n",
19
- "\n",
20
- "\n",
21
- "In this notebook we fine-tune GPT2 (small) to generate positive movie reviews based on the IMDB dataset. The model gets the start of a real review and is tasked to produce positive continuations. To reward positive continuations we use a BERT classifier to analyse the sentiment of the produced sentences and use the classifier's outputs as rewards signals for PPO training."
22
- ]
23
- },
24
- {
25
- "cell_type": "markdown",
26
- "metadata": {},
27
- "source": [
28
- "## Setup experiment"
29
- ]
30
- },
31
- {
32
- "cell_type": "markdown",
33
- "metadata": {},
34
- "source": [
35
- "### Import dependencies"
36
- ]
37
- },
38
- {
39
- "cell_type": "code",
40
- "execution_count": null,
41
- "metadata": {},
42
- "outputs": [],
43
- "source": [
44
- "%load_ext autoreload\n",
45
- "%autoreload 2"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": null,
51
- "metadata": {},
52
- "outputs": [],
53
- "source": [
54
- "%pip install transformers trl wandb"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "metadata": {},
61
- "outputs": [],
62
- "source": [
63
- "import torch\n",
64
- "from tqdm import tqdm\n",
65
- "import pandas as pd\n",
66
- "\n",
67
- "tqdm.pandas()\n",
68
- "\n",
69
- "from transformers import pipeline, AutoTokenizer\n",
70
- "from datasets import load_dataset\n",
71
- "\n",
72
- "from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead\n",
73
- "from trl.core import LengthSampler"
74
- ]
75
- },
76
- {
77
- "cell_type": "markdown",
78
- "metadata": {},
79
- "source": [
80
- "### Configuration"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "config = PPOConfig(\n",
90
- " model_name=\"lvwerra/gpt2-imdb\",\n",
91
- " learning_rate=1.41e-5,\n",
92
- " log_with=\"wandb\",\n",
93
- ")\n",
94
- "\n",
95
- "sent_kwargs = {\"return_all_scores\": True, \"function_to_apply\": \"none\", \"batch_size\": 16}"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": null,
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "import wandb\n",
105
- "\n",
106
- "wandb.init()"
107
- ]
108
- },
109
- {
110
- "cell_type": "markdown",
111
- "metadata": {},
112
- "source": [
113
- "You can see that we load a GPT2 model called `gpt2_imdb`. This model was additionally fine-tuned on the IMDB dataset for 1 epoch with the huggingface [script](https://github.com/huggingface/transformers/blob/master/examples/run_language_modeling.py) (no special settings). The other parameters are mostly taken from the original paper [\"Fine-Tuning Language Models from Human Preferences\"](\n",
114
- "https://arxiv.org/pdf/1909.08593.pdf). This model as well as the BERT model is available in the Huggingface model zoo [here](https://huggingface.co/models). The following code should automatically download the models."
115
- ]
116
- },
117
- {
118
- "cell_type": "markdown",
119
- "metadata": {},
120
- "source": [
121
- "## Load data and models"
122
- ]
123
- },
124
- {
125
- "attachments": {},
126
- "cell_type": "markdown",
127
- "metadata": {},
128
- "source": [
129
- "### Load IMDB dataset\n",
130
- "The IMDB dataset contains 50k movie review annotated with \"positive\"/\"negative\" feedback indicating the sentiment. We load the IMDB dataset into a DataFrame and filter for comments that are at least 200 characters. Then we tokenize each text and cut it to random size with the `LengthSampler`."
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "metadata": {},
137
- "outputs": [],
138
- "source": [
139
- "def build_dataset(config, dataset_name=\"imdb\", input_min_text_length=2, input_max_text_length=8):\n",
140
- " \"\"\"\n",
141
- " Build dataset for training. This builds the dataset from `load_dataset`, one should\n",
142
- " customize this function to train the model on its own dataset.\n",
143
- "\n",
144
- " Args:\n",
145
- " dataset_name (`str`):\n",
146
- " The name of the dataset to be loaded.\n",
147
- "\n",
148
- " Returns:\n",
149
- " dataloader (`torch.utils.data.DataLoader`):\n",
150
- " The dataloader for the dataset.\n",
151
- " \"\"\"\n",
152
- " tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
153
- " tokenizer.pad_token = tokenizer.eos_token\n",
154
- " # load imdb with datasets\n",
155
- " ds = load_dataset(dataset_name, split=\"train\")\n",
156
- " ds = ds.rename_columns({\"text\": \"review\"})\n",
157
- " ds = ds.filter(lambda x: len(x[\"review\"]) > 200, batched=False)\n",
158
- "\n",
159
- " input_size = LengthSampler(input_min_text_length, input_max_text_length)\n",
160
- "\n",
161
- " def tokenize(sample):\n",
162
- " sample[\"input_ids\"] = tokenizer.encode(sample[\"review\"])[: input_size()]\n",
163
- " sample[\"query\"] = tokenizer.decode(sample[\"input_ids\"])\n",
164
- " return sample\n",
165
- "\n",
166
- " ds = ds.map(tokenize, batched=False)\n",
167
- " ds.set_format(type=\"torch\")\n",
168
- " return ds"
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "execution_count": null,
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "dataset = build_dataset(config)\n",
178
- "\n",
179
- "\n",
180
- "def collator(data):\n",
181
- " return dict((key, [d[key] for d in data]) for key in data[0])"
182
- ]
183
- },
184
- {
185
- "cell_type": "markdown",
186
- "metadata": {},
187
- "source": [
188
- "### Load pre-trained GPT2 language models"
189
- ]
190
- },
191
- {
192
- "cell_type": "markdown",
193
- "metadata": {},
194
- "source": [
195
- "We load the GPT2 model with a value head and the tokenizer. We load the model twice; the first model is optimized while the second model serves as a reference to calculate the KL-divergence from the starting point. This serves as an additional reward signal in the PPO training to make sure the optimized model does not deviate too much from the original language model."
196
- ]
197
- },
198
- {
199
- "cell_type": "code",
200
- "execution_count": null,
201
- "metadata": {},
202
- "outputs": [],
203
- "source": [
204
- "model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
205
- "ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
206
- "tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
207
- "\n",
208
- "tokenizer.pad_token = tokenizer.eos_token"
209
- ]
210
- },
211
- {
212
- "attachments": {},
213
- "cell_type": "markdown",
214
- "metadata": {},
215
- "source": [
216
- "### Initialize PPOTrainer\n",
217
- "The `PPOTrainer` takes care of device placement and optimization later on:"
218
- ]
219
- },
220
- {
221
- "cell_type": "code",
222
- "execution_count": null,
223
- "metadata": {},
224
- "outputs": [],
225
- "source": [
226
- "ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator)"
227
- ]
228
- },
229
- {
230
- "cell_type": "markdown",
231
- "metadata": {},
232
- "source": [
233
- "### Load BERT classifier\n",
234
- "We load a BERT classifier fine-tuned on the IMDB dataset."
235
- ]
236
- },
237
- {
238
- "cell_type": "code",
239
- "execution_count": null,
240
- "metadata": {},
241
- "outputs": [],
242
- "source": [
243
- "device = ppo_trainer.accelerator.device\n",
244
- "if ppo_trainer.accelerator.num_processes == 1:\n",
245
- " device = 0 if torch.cuda.is_available() else \"cpu\" # to avoid a `pipeline` bug\n",
246
- "sentiment_pipe = pipeline(\"sentiment-analysis\", model=\"lvwerra/distilbert-imdb\", device=device)"
247
- ]
248
- },
249
- {
250
- "cell_type": "markdown",
251
- "metadata": {},
252
- "source": [
253
- "The model outputs are the logits for the negative and positive class. We will use the logits for positive class as a reward signal for the language model."
254
- ]
255
- },
256
- {
257
- "cell_type": "code",
258
- "execution_count": null,
259
- "metadata": {},
260
- "outputs": [],
261
- "source": [
262
- "text = \"this movie was really bad!!\"\n",
263
- "sentiment_pipe(text, **sent_kwargs)"
264
- ]
265
- },
266
- {
267
- "cell_type": "code",
268
- "execution_count": null,
269
- "metadata": {},
270
- "outputs": [],
271
- "source": [
272
- "text = \"this movie was really good!!\"\n",
273
- "sentiment_pipe(text, **sent_kwargs)"
274
- ]
275
- },
276
- {
277
- "cell_type": "markdown",
278
- "metadata": {},
279
- "source": [
280
- "### Generation settings\n",
281
- "For the response generation we just use sampling and make sure top-k and nucleus sampling are turned off as well as a minimal length."
282
- ]
283
- },
284
- {
285
- "cell_type": "code",
286
- "execution_count": null,
287
- "metadata": {},
288
- "outputs": [],
289
- "source": [
290
- "gen_kwargs = {\"min_length\": -1, \"top_k\": 0.0, \"top_p\": 1.0, \"do_sample\": True, \"pad_token_id\": tokenizer.eos_token_id}"
291
- ]
292
- },
293
- {
294
- "cell_type": "markdown",
295
- "metadata": {},
296
- "source": [
297
- "## Optimize model"
298
- ]
299
- },
300
- {
301
- "cell_type": "markdown",
302
- "metadata": {},
303
- "source": [
304
- "### Training loop"
305
- ]
306
- },
307
- {
308
- "cell_type": "markdown",
309
- "metadata": {},
310
- "source": [
311
- "The training loop consists of the following main steps:\n",
312
- "1. Get the query responses from the policy network (GPT-2)\n",
313
- "2. Get sentiments for query/responses from BERT\n",
314
- "3. Optimize policy with PPO using the (query, response, reward) triplet\n",
315
- "\n",
316
- "**Training time**\n",
317
- "\n",
318
- "This step takes **~2h** on a V100 GPU with the above specified settings."
319
- ]
320
- },
321
- {
322
- "cell_type": "code",
323
- "execution_count": null,
324
- "metadata": {},
325
- "outputs": [],
326
- "source": [
327
- "output_min_length = 4\n",
328
- "output_max_length = 16\n",
329
- "output_length_sampler = LengthSampler(output_min_length, output_max_length)\n",
330
- "\n",
331
- "\n",
332
- "generation_kwargs = {\n",
333
- " \"min_length\": -1,\n",
334
- " \"top_k\": 0.0,\n",
335
- " \"top_p\": 1.0,\n",
336
- " \"do_sample\": True,\n",
337
- " \"pad_token_id\": tokenizer.eos_token_id,\n",
338
- "}\n",
339
- "\n",
340
- "\n",
341
- "for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):\n",
342
- " query_tensors = batch[\"input_ids\"]\n",
343
- "\n",
344
- " #### Get response from gpt2\n",
345
- " response_tensors = []\n",
346
- " for query in query_tensors:\n",
347
- " gen_len = output_length_sampler()\n",
348
- " generation_kwargs[\"max_new_tokens\"] = gen_len\n",
349
- " response = ppo_trainer.generate(query, **generation_kwargs)\n",
350
- " response_tensors.append(response.squeeze()[-gen_len:])\n",
351
- " batch[\"response\"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]\n",
352
- "\n",
353
- " #### Compute sentiment score\n",
354
- " texts = [q + r for q, r in zip(batch[\"query\"], batch[\"response\"])]\n",
355
- " pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
356
- " rewards = [torch.tensor(output[1][\"score\"]) for output in pipe_outputs]\n",
357
- "\n",
358
- " #### Run PPO step\n",
359
- " stats = ppo_trainer.step(query_tensors, response_tensors, rewards)\n",
360
- " ppo_trainer.log_stats(stats, batch, rewards)"
361
- ]
362
- },
363
- {
364
- "cell_type": "markdown",
365
- "metadata": {},
366
- "source": [
367
- "### Training progress\n",
368
- "If you are tracking the training progress with Weights&Biases you should see a plot similar to the one below. Check out the interactive sample report on wandb.ai: [link](https://app.wandb.ai/huggingface/trl-showcase/runs/1jtvxb1m/).\n",
369
- "\n",
370
- "<div style=\"text-align: center\">\n",
371
- "<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_tuning_progress.png' width='800'>\n",
372
- "<p style=\"text-align: center;\"> <b>Figure:</b> Reward mean and distribution evolution during training. </p>\n",
373
- "</div>\n",
374
- "\n",
375
- "One can observe how the model starts to generate more positive outputs after a few optimisation steps.\n",
376
- "\n",
377
- "> Note: Investigating the KL-divergence will probably show that at this point the model has not converged to the target KL-divergence, yet. To get there would require longer training or starting with a higher initial coefficient."
378
- ]
379
- },
380
- {
381
- "attachments": {},
382
- "cell_type": "markdown",
383
- "metadata": {},
384
- "source": [
385
- "## Model inspection\n",
386
- "Let's inspect some examples from the IMDB dataset. We can use `model_ref` to compare the tuned model `model` against the model before optimisation."
387
- ]
388
- },
389
- {
390
- "cell_type": "code",
391
- "execution_count": null,
392
- "metadata": {},
393
- "outputs": [],
394
- "source": [
395
- "#### get a batch from the dataset\n",
396
- "bs = 16\n",
397
- "game_data = dict()\n",
398
- "dataset.set_format(\"pandas\")\n",
399
- "df_batch = dataset[:].sample(bs)\n",
400
- "game_data[\"query\"] = df_batch[\"query\"].tolist()\n",
401
- "query_tensors = df_batch[\"input_ids\"].tolist()\n",
402
- "\n",
403
- "response_tensors_ref, response_tensors = [], []\n",
404
- "\n",
405
- "#### get response from gpt2 and gpt2_ref\n",
406
- "for i in range(bs):\n",
407
- " gen_len = output_length_sampler()\n",
408
- " output = ref_model.generate(\n",
409
- " torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
410
- " ).squeeze()[-gen_len:]\n",
411
- " response_tensors_ref.append(output)\n",
412
- " output = model.generate(\n",
413
- " torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
414
- " ).squeeze()[-gen_len:]\n",
415
- " response_tensors.append(output)\n",
416
- "\n",
417
- "#### decode responses\n",
418
- "game_data[\"response (before)\"] = [tokenizer.decode(response_tensors_ref[i]) for i in range(bs)]\n",
419
- "game_data[\"response (after)\"] = [tokenizer.decode(response_tensors[i]) for i in range(bs)]\n",
420
- "\n",
421
- "#### sentiment analysis of query/response pairs before/after\n",
422
- "texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (before)\"])]\n",
423
- "game_data[\"rewards (before)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
424
- "\n",
425
- "texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (after)\"])]\n",
426
- "game_data[\"rewards (after)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
427
- "\n",
428
- "# store results in a dataframe\n",
429
- "df_results = pd.DataFrame(game_data)\n",
430
- "df_results"
431
- ]
432
- },
433
- {
434
- "cell_type": "markdown",
435
- "metadata": {},
436
- "source": [
437
- "Looking at the reward mean/median of the generated sequences we observe a significant difference."
438
- ]
439
- },
440
- {
441
- "cell_type": "code",
442
- "execution_count": null,
443
- "metadata": {},
444
- "outputs": [],
445
- "source": [
446
- "print(\"mean:\")\n",
447
- "display(df_results[[\"rewards (before)\", \"rewards (after)\"]].mean())\n",
448
- "print()\n",
449
- "print(\"median:\")\n",
450
- "display(df_results[[\"rewards (before)\", \"rewards (after)\"]].median())"
451
- ]
452
- },
453
- {
454
- "cell_type": "markdown",
455
- "metadata": {},
456
- "source": [
457
- "## Save model\n",
458
- "Finally, we save the model and push it to the Hugging Face for later usage."
459
- ]
460
- },
461
- {
462
- "cell_type": "code",
463
- "execution_count": null,
464
- "metadata": {},
465
- "outputs": [],
466
- "source": [
467
- "model.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)\n",
468
- "tokenizer.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)"
469
- ]
470
- },
471
- {
472
- "cell_type": "code",
473
- "execution_count": null,
474
- "metadata": {},
475
- "outputs": [],
476
- "source": []
477
- }
478
- ],
479
- "metadata": {
480
- "kernelspec": {
481
- "display_name": "env",
482
- "language": "python",
483
- "name": "python3"
484
- },
485
- "language_info": {
486
- "codemirror_mode": {
487
- "name": "ipython",
488
- "version": 3
489
- },
490
- "file_extension": ".py",
491
- "mimetype": "text/x-python",
492
- "name": "python",
493
- "nbconvert_exporter": "python",
494
- "pygments_lexer": "ipython3",
495
- "version": "3.10.13"
496
- },
497
- "vscode": {
498
- "interpreter": {
499
- "hash": "4c8ff454cd947027f86954d72bf940c689a97dcc494eb53cfe4813862c6065fe"
500
- }
501
- }
502
- },
503
- "nbformat": 4,
504
- "nbformat_minor": 4
505
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gpt2_generation.py CHANGED
@@ -100,12 +100,6 @@ def prepare_xlm_input(args, model, tokenizer, prompt_text):
100
  model.config.lang_id = model.config.lang2id[language]
101
  # kwargs["language"] = tokenizer.lang2id[language]
102
 
103
- # TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
104
- # XLM masked-language modeling (MLM) models need masked token
105
- # is_xlm_mlm = "mlm" in args.model_name_or_path
106
- # if is_xlm_mlm:
107
- # kwargs["mask_token_id"] = tokenizer.mask_token_id
108
-
109
  return prompt_text
110
 
111
 
@@ -373,15 +367,7 @@ def generate_prompt(
373
  total_sequence = (
374
  prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
375
  )
376
- # no checking for prompt_text.
377
- # 暂时删去关键词检测
378
- # docs = nlp(text)
379
- # nouns = [token.text for token in docs if token.pos_ == 'NOUN']
380
- # nouns = set(nouns)
381
- # if nouns.intersection(FORBIDDEN_NOUN) and repeat_gen_time < 10:
382
- # continue
383
- # else:
384
- # break
385
  break
386
  total_sequence = remove_tokens_before_copula(total_sequence)
387
  generated_sequences.append(total_sequence)
 
100
  model.config.lang_id = model.config.lang2id[language]
101
  # kwargs["language"] = tokenizer.lang2id[language]
102
 
 
 
 
 
 
 
103
  return prompt_text
104
 
105
 
 
367
  total_sequence = (
368
  prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
369
  )
370
+
 
 
 
 
 
 
 
 
371
  break
372
  total_sequence = remove_tokens_before_copula(total_sequence)
373
  generated_sequences.append(total_sequence)
gpt_api.py DELETED
@@ -1,27 +0,0 @@
1
- import openai
2
-
3
-
4
- def get_response_create_data(cn_text):
5
- openai.api_type = "azure"
6
- openai.api_base = "https://poster-pku-gpt4.openai.azure.com/"
7
- openai.api_version = "2023-07-01-preview"
8
- openai.api_key = '788c2b57f1954ddc92bb27786fbcdd6e'
9
-
10
- response = openai.ChatCompletion.create(
11
- engine="dragon",
12
- messages=[{"role": "system", "content": "Now you are a home improvement designer,\
13
- I give you some keywords, generate a brief interior design in English, no more than words: "},
14
- {"role": "user", "content": cn_text}],
15
- temperature=0.7,
16
- max_tokens=800,
17
- top_p=0.95,
18
- frequency_penalty=0,
19
- presence_penalty=0,
20
- stop=None)
21
- return response['choices'][0]["message"]["content"]
22
-
23
-
24
- if __name__ == '__main__':
25
- while (1):
26
- input_text = input("输入:")
27
- get_response_create_data(input_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monitor.sh DELETED
@@ -1,15 +0,0 @@
1
- #!/bin/bash
2
-
3
- while true; do
4
-
5
- seed=$(date +%s)
6
-
7
- python trible.py ${seed}
8
-
9
- if [ $? -eq 0 ]; then
10
- echo "program complect, no need to restart..."
11
- break
12
- else
13
- echo "program crash, restarting"
14
- fi
15
- done
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rouge/README.md DELETED
@@ -1,161 +0,0 @@
1
- ---
2
- title: ROUGE
3
- emoji: 🤗
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 3.19.1
8
- app_file: app.py
9
- pinned: false
10
- tags:
11
- - evaluate
12
- - metric
13
- description: >-
14
- ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
15
- evaluating automatic summarization and machine translation software in natural language processing.
16
- The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
17
-
18
- Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
19
-
20
- This metrics is a wrapper around Google Research reimplementation of ROUGE:
21
- https://github.com/google-research/google-research/tree/master/rouge
22
- ---
23
-
24
- # Metric Card for ROUGE
25
-
26
- ## Metric Description
27
- ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
28
-
29
- Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
30
-
31
- This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
32
-
33
- ## How to Use
34
- At minimum, this metric takes as input a list of predictions and a list of references:
35
- ```python
36
- >>> rouge = evaluate.load('rouge')
37
- >>> predictions = ["hello there", "general kenobi"]
38
- >>> references = ["hello there", "general kenobi"]
39
- >>> results = rouge.compute(predictions=predictions,
40
- ... references=references)
41
- >>> print(results)
42
- {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
43
- ```
44
-
45
- One can also pass a custom tokenizer which is especially useful for non-latin languages.
46
- ```python
47
- >>> results = rouge.compute(predictions=predictions,
48
- ... references=references,
49
- tokenizer=lambda x: x.split())
50
- >>> print(results)
51
- {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
52
- ```
53
-
54
- It can also deal with lists of references for each predictions:
55
- ```python
56
- >>> rouge = evaluate.load('rouge')
57
- >>> predictions = ["hello there", "general kenobi"]
58
- >>> references = [["hello", "there"], ["general kenobi", "general yoda"]]
59
- >>> results = rouge.compute(predictions=predictions,
60
- ... references=references)
61
- >>> print(results)
62
- {'rouge1': 0.8333, 'rouge2': 0.5, 'rougeL': 0.8333, 'rougeLsum': 0.8333}```
63
- ```
64
-
65
- ### Inputs
66
- - **predictions** (`list`): list of predictions to score. Each prediction
67
- should be a string with tokens separated by spaces.
68
- - **references** (`list` or `list[list]`): list of reference for each prediction or a list of several references per prediction. Each
69
- reference should be a string with tokens separated by spaces.
70
- - **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`.
71
- - Valid rouge types:
72
- - `"rouge1"`: unigram (1-gram) based scoring
73
- - `"rouge2"`: bigram (2-gram) based scoring
74
- - `"rougeL"`: Longest common subsequence based scoring.
75
- - `"rougeLSum"`: splits text using `"\n"`
76
- - See [here](https://github.com/huggingface/datasets/issues/617) for more information
77
- - **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`.
78
- - **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`.
79
-
80
- ### Output Values
81
- The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of scores, with one score for each sentence. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is:
82
-
83
- ```python
84
- {'rouge1': [0.6666666666666666, 1.0], 'rouge2': [0.0, 1.0]}
85
- ```
86
-
87
- If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format:
88
- ```python
89
- {'rouge1': 1.0, 'rouge2': 1.0}
90
- ```
91
-
92
- The ROUGE values are in the range of 0 to 1.
93
-
94
-
95
- #### Values from Popular Papers
96
-
97
-
98
- ### Examples
99
- An example without aggregation:
100
- ```python
101
- >>> rouge = evaluate.load('rouge')
102
- >>> predictions = ["hello goodbye", "ankh morpork"]
103
- >>> references = ["goodbye", "general kenobi"]
104
- >>> results = rouge.compute(predictions=predictions,
105
- ... references=references,
106
- ... use_aggregator=False)
107
- >>> print(list(results.keys()))
108
- ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
109
- >>> print(results["rouge1"])
110
- [0.5, 0.0]
111
- ```
112
-
113
- The same example, but with aggregation:
114
- ```python
115
- >>> rouge = evaluate.load('rouge')
116
- >>> predictions = ["hello goodbye", "ankh morpork"]
117
- >>> references = ["goodbye", "general kenobi"]
118
- >>> results = rouge.compute(predictions=predictions,
119
- ... references=references,
120
- ... use_aggregator=True)
121
- >>> print(list(results.keys()))
122
- ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
123
- >>> print(results["rouge1"])
124
- 0.25
125
- ```
126
-
127
- The same example, but only calculating `rouge_1`:
128
- ```python
129
- >>> rouge = evaluate.load('rouge')
130
- >>> predictions = ["hello goodbye", "ankh morpork"]
131
- >>> references = ["goodbye", "general kenobi"]
132
- >>> results = rouge.compute(predictions=predictions,
133
- ... references=references,
134
- ... rouge_types=['rouge_1'],
135
- ... use_aggregator=True)
136
- >>> print(list(results.keys()))
137
- ['rouge1']
138
- >>> print(results["rouge1"])
139
- 0.25
140
- ```
141
-
142
- ## Limitations and Bias
143
- See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits.
144
-
145
- ## Citation
146
- ```bibtex
147
- @inproceedings{lin-2004-rouge,
148
- title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
149
- author = "Lin, Chin-Yew",
150
- booktitle = "Text Summarization Branches Out",
151
- month = jul,
152
- year = "2004",
153
- address = "Barcelona, Spain",
154
- publisher = "Association for Computational Linguistics",
155
- url = "https://www.aclweb.org/anthology/W04-1013",
156
- pages = "74--81",
157
- }
158
- ```
159
-
160
- ## Further References
161
- - This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rouge/app.py DELETED
@@ -1,6 +0,0 @@
1
- import evaluate
2
- from evaluate.utils import launch_gradio_widget
3
-
4
-
5
- module = evaluate.load("rouge")
6
- launch_gradio_widget(module)
 
 
 
 
 
 
 
rouge/requirements.txt DELETED
@@ -1,4 +0,0 @@
1
- git+https://github.com/huggingface/evaluate@{COMMIT_PLACEHOLDER}
2
- absl-py
3
- nltk
4
- rouge_score>=0.1.2
 
 
 
 
 
rouge/rouge.py DELETED
@@ -1,158 +0,0 @@
1
- # Copyright 2020 The HuggingFace Evaluate Authors.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """ ROUGE metric from Google Research github repo. """
15
-
16
- # The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
17
- import absl # Here to have a nice missing dependency error message early on
18
- import datasets
19
- import nltk # Here to have a nice missing dependency error message early on
20
- import numpy # Here to have a nice missing dependency error message early on
21
- import six # Here to have a nice missing dependency error message early on
22
- from rouge_score import rouge_scorer, scoring
23
-
24
- import evaluate
25
-
26
-
27
- _CITATION = """\
28
- @inproceedings{lin-2004-rouge,
29
- title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
30
- author = "Lin, Chin-Yew",
31
- booktitle = "Text Summarization Branches Out",
32
- month = jul,
33
- year = "2004",
34
- address = "Barcelona, Spain",
35
- publisher = "Association for Computational Linguistics",
36
- url = "https://www.aclweb.org/anthology/W04-1013",
37
- pages = "74--81",
38
- }
39
- """
40
-
41
- _DESCRIPTION = """\
42
- ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
43
- evaluating automatic summarization and machine translation software in natural language processing.
44
- The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
45
-
46
- Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
47
-
48
- This metrics is a wrapper around Google Research reimplementation of ROUGE:
49
- https://github.com/google-research/google-research/tree/master/rouge
50
- """
51
-
52
- _KWARGS_DESCRIPTION = """
53
- Calculates average rouge scores for a list of hypotheses and references
54
- Args:
55
- predictions: list of predictions to score. Each prediction
56
- should be a string with tokens separated by spaces.
57
- references: list of reference for each prediction. Each
58
- reference should be a string with tokens separated by spaces.
59
- rouge_types: A list of rouge types to calculate.
60
- Valid names:
61
- `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
62
- `"rougeL"`: Longest common subsequence based scoring.
63
- `"rougeLsum"`: rougeLsum splits text using `"\n"`.
64
- See details in https://github.com/huggingface/datasets/issues/617
65
- use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
66
- use_aggregator: Return aggregates if this is set to True
67
- Returns:
68
- rouge1: rouge_1 (f1),
69
- rouge2: rouge_2 (f1),
70
- rougeL: rouge_l (f1),
71
- rougeLsum: rouge_lsum (f1)
72
- Examples:
73
-
74
- >>> rouge = evaluate.load('rouge')
75
- >>> predictions = ["hello there", "general kenobi"]
76
- >>> references = ["hello there", "general kenobi"]
77
- >>> results = rouge.compute(predictions=predictions, references=references)
78
- >>> print(results)
79
- {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
80
- """
81
-
82
-
83
- class Tokenizer:
84
- """Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score."""
85
-
86
- def __init__(self, tokenizer_func):
87
- self.tokenizer_func = tokenizer_func
88
-
89
- def tokenize(self, text):
90
- return self.tokenizer_func(text)
91
-
92
-
93
- @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
94
- class Rouge(evaluate.Metric):
95
- def _info(self):
96
- return evaluate.MetricInfo(
97
- description=_DESCRIPTION,
98
- citation=_CITATION,
99
- inputs_description=_KWARGS_DESCRIPTION,
100
- features=[
101
- datasets.Features(
102
- {
103
- "predictions": datasets.Value("string", id="sequence"),
104
- "references": datasets.Sequence(datasets.Value("string", id="sequence")),
105
- }
106
- ),
107
- datasets.Features(
108
- {
109
- "predictions": datasets.Value("string", id="sequence"),
110
- "references": datasets.Value("string", id="sequence"),
111
- }
112
- ),
113
- ],
114
- codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
115
- reference_urls=[
116
- "https://en.wikipedia.org/wiki/ROUGE_(metric)",
117
- "https://github.com/google-research/google-research/tree/master/rouge",
118
- ],
119
- )
120
-
121
- def _compute(
122
- self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False, tokenizer=None
123
- ):
124
- if rouge_types is None:
125
- rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
126
-
127
- multi_ref = isinstance(references[0], list)
128
-
129
- if tokenizer is not None:
130
- tokenizer = Tokenizer(tokenizer)
131
-
132
- scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer, tokenizer=tokenizer)
133
- if use_aggregator:
134
- aggregator = scoring.BootstrapAggregator()
135
- else:
136
- scores = []
137
-
138
- for ref, pred in zip(references, predictions):
139
- if multi_ref:
140
- score = scorer.score_multi(ref, pred)
141
- else:
142
- score = scorer.score(ref, pred)
143
- if use_aggregator:
144
- aggregator.add_scores(score)
145
- else:
146
- scores.append(score)
147
-
148
- if use_aggregator:
149
- result = aggregator.aggregate()
150
- for key in result:
151
- result[key] = result[key].mid.fmeasure
152
-
153
- else:
154
- result = {}
155
- for key in scores[0]:
156
- result[key] = list(score[key].fmeasure for score in scores)
157
-
158
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sft.py DELETED
@@ -1,81 +0,0 @@
1
- import time
2
- import evaluate
3
- import numpy as np
4
- import math
5
- from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
6
- from transformers import TrainingArguments, Trainer
7
-
8
- from transformers.trainer_callback import TrainerCallback
9
-
10
- from utils import (
11
- get_dataset,
12
- get_tok_and_model,
13
- get_open_prompt_data,
14
- get_dict_dataset,
15
- get_advance_dataset,)
16
-
17
- base_model = "gpt2"
18
- tokenizer, model = get_tok_and_model(f"./models/{base_model}")
19
- tokenizer.pad_token = tokenizer.eos_token
20
- rouge = evaluate.load("rouge")
21
-
22
- dict_data = get_dict_dataset("./data")
23
- dataset = get_advance_dataset(dict_data)
24
- dataset = dataset.train_test_split(test_size=0.05)
25
-
26
- def preprocess_function(examples):
27
- x_inputs = [x for x in examples["x"]]
28
- y_inputs = examples["y"]
29
- model_inputs = tokenizer(x_inputs, max_length=256, truncation=True)
30
-
31
- labels = tokenizer(y_inputs, max_length=256, truncation=True)
32
-
33
- model_inputs["labels"] = labels["input_ids"]
34
- return model_inputs
35
-
36
- class CustomCallback(TrainerCallback):
37
- def on_epoch_end(self, args, state, control, **kwargs):
38
- control.should_evaluate=True,
39
-
40
- def on_evaluate(self, args, state, control, **kwargs):
41
- eval_results = kwargs["metrics"]
42
- print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\n")
43
-
44
- # data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
45
- data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
46
-
47
-
48
- print("tokenize data...")
49
- t1 = time.time()
50
- tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=["x", "y"])
51
- t2 = time.time()
52
- print(f"data tokenize done. process time : {t2 - t1}")
53
-
54
-
55
- training_args = TrainingArguments(
56
- output_dir=f"./output/{base_model}_openprompt",
57
- evaluation_strategy="steps",
58
- eval_steps=20000,
59
- learning_rate=3e-5,
60
- lr_scheduler_type="constant",
61
- report_to="tensorboard",
62
- per_device_train_batch_size=64,
63
- per_device_eval_batch_size=32,
64
- save_total_limit=1,
65
- num_train_epochs=60,
66
- fp16=True,
67
- push_to_hub=False,
68
- )
69
-
70
- trainer = Trainer(
71
- model=model,
72
- args=training_args,
73
- train_dataset=tokenized_dataset["train"],
74
- eval_dataset=tokenized_dataset["test"],
75
- tokenizer=tokenizer,
76
- data_collator=data_collator,
77
- callbacks=[CustomCallback]
78
- )
79
-
80
- trainer.train()
81
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trible.py DELETED
@@ -1,56 +0,0 @@
1
- import os
2
- import click
3
- import random
4
- import jsonlines
5
-
6
- from tqdm import tqdm
7
- from gpt_api import get_response_create_data
8
-
9
-
10
- KEYWORDS_PATH = "/data/aigc/zw/task2/pg_distilgpt/data/raw_keywords.txt"
11
- TARGET_PATH = "/data/aigc/zw/task2/pg_distilgpt/data/raw_discriptions.jsonl"
12
-
13
- if not os.path.exists(TARGET_PATH):
14
- with open(TARGET_PATH, "w") as f:
15
- pass
16
-
17
-
18
- def read_keywords(path=KEYWORDS_PATH):
19
-
20
- keywords = []
21
-
22
- with open(path, 'r', encoding='utf-8') as file:
23
- for line in tqdm(file, desc="reading keywords"):
24
- parts = line.strip().split('\t')
25
- result = parts[0]
26
- keywords.append(result)
27
-
28
- return keywords
29
-
30
- def keywords_sampler(num, key_words):
31
- random.seed()
32
- while(1):
33
- sampled_words = random.sample(key_words, num)
34
- yield sampled_words
35
-
36
- def create_data(keywords, total_num=10000, n=4, seed=42):
37
- random.seed(seed)
38
- for n, key_words in tqdm(enumerate(keywords_sampler(n, keywords)), desc="generating data"):
39
-
40
- res = get_response_create_data(" ".join(key_words))
41
-
42
- with jsonlines.open(TARGET_PATH, mode='a') as writer:
43
- writer.write({"keywrods": key_words, "description": res})
44
-
45
- if n >= total_num:
46
- print("generation data done.")
47
- break
48
-
49
- @click.command()
50
- @click.argument('seed', type=int)
51
- def main(seed):
52
- keywords = read_keywords()
53
- create_data(keywords, seed=seed)
54
-
55
- if __name__ == '__main__':
56
- main()