Spaces:
Sleeping
Sleeping
TpsNandhini
commited on
Commit
•
df64dc1
1
Parent(s):
cc06346
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.ensemble import RandomForestRegressor
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
# Load and preprocess data
|
10 |
+
@st.cache_data
|
11 |
+
def load_data():
|
12 |
+
# Replace this with your actual data loading method
|
13 |
+
data = pd.read_csv('employee_performance_data.csv')
|
14 |
+
return data
|
15 |
+
|
16 |
+
# Train model
|
17 |
+
@st.cache_resource
|
18 |
+
def train_model(data):
|
19 |
+
X = data.drop('performance_score', axis=1)
|
20 |
+
y = data['performance_score']
|
21 |
+
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
+
|
24 |
+
scaler = StandardScaler()
|
25 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
26 |
+
X_test_scaled = scaler.transform(X_test)
|
27 |
+
|
28 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
29 |
+
model.fit(X_train_scaled, y_train)
|
30 |
+
|
31 |
+
return model, scaler
|
32 |
+
|
33 |
+
# Streamlit app
|
34 |
+
def main():
|
35 |
+
st.title('Employee Performance Prediction')
|
36 |
+
|
37 |
+
data = load_data()
|
38 |
+
model, scaler = train_model(data)
|
39 |
+
|
40 |
+
st.sidebar.header('Input Parameters')
|
41 |
+
|
42 |
+
# Create input fields for user
|
43 |
+
age = st.sidebar.slider('Age', 18, 65, 30)
|
44 |
+
experience = st.sidebar.slider('Years of Experience', 0, 40, 5)
|
45 |
+
training_score = st.sidebar.slider('Training Score', 0.0, 100.0, 75.0)
|
46 |
+
project_completion = st.sidebar.slider('Project Completion Rate', 0.0, 100.0, 80.0)
|
47 |
+
|
48 |
+
# Create a dataframe with user input
|
49 |
+
user_input = pd.DataFrame({
|
50 |
+
'age': [age],
|
51 |
+
'experience': [experience],
|
52 |
+
'training_score': [training_score],
|
53 |
+
'project_completion': [project_completion]
|
54 |
+
})
|
55 |
+
|
56 |
+
# Scale the input
|
57 |
+
user_input_scaled = scaler.transform(user_input)
|
58 |
+
|
59 |
+
# Make prediction
|
60 |
+
prediction = model.predict(user_input_scaled)
|
61 |
+
|
62 |
+
st.subheader('Predicted Performance Score')
|
63 |
+
st.write(f"{prediction[0]:.2f}")
|
64 |
+
|
65 |
+
st.subheader('Performance Interpretation')
|
66 |
+
if prediction[0] >= 90:
|
67 |
+
st.write("Excellent performance!")
|
68 |
+
elif prediction[0] >= 75:
|
69 |
+
st.write("Good performance")
|
70 |
+
elif prediction[0] >= 60:
|
71 |
+
st.write("Average performance")
|
72 |
+
else:
|
73 |
+
st.write("Needs improvement")
|
74 |
+
|
75 |
+
if __name__ == '__main__':
|
76 |
+
main()
|