Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow import keras
|
5 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, GlobalAveragePooling2D
|
6 |
+
from tensorflow.keras.models import Model, load_model, Sequential
|
7 |
+
from tensorflow.keras.optimizers import Adam
|
8 |
+
from tensorflow.keras.metrics import Precision, Recall
|
9 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
10 |
+
from sklearn.utils.class_weight import compute_class_weight
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
|
13 |
+
from tensorflow.keras.utils import to_categorical
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import warnings
|
16 |
+
import warnings
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
# print ('modules loaded')
|
20 |
+
|
21 |
+
|
22 |
+
import streamlit as st
|
23 |
+
import pandas as pd
|
24 |
+
import numpy as np
|
25 |
+
from PIL import Image
|
26 |
+
import tensorflow.keras as keras
|
27 |
+
|
28 |
+
st.title("Skin Cancer Classification App")
|
29 |
+
|
30 |
+
models = {
|
31 |
+
"Le_Net": load_model('LeNet_5.h5'),
|
32 |
+
"Simple_CNN": load_model('Simple CNN.h5'),
|
33 |
+
"Alex_Net": load_model('AlexNet.h5'),
|
34 |
+
"Deeper_CNN": load_model('Deeper CNN.h5')
|
35 |
+
}
|
36 |
+
|
37 |
+
# Allow user to select model
|
38 |
+
model_name = st.selectbox("Choose a model", list(models.keys()))
|
39 |
+
model = models[model_name]
|
40 |
+
|
41 |
+
# Upload CSV file
|
42 |
+
# file = st.file_uploader("Upload a CSV file", type=["csv"])
|
43 |
+
file ='hmnist_28_28_RGB.csv'
|
44 |
+
|
45 |
+
def image_resize(data):
|
46 |
+
Data = data.drop(columns=["label"])
|
47 |
+
Data = np.array(Data).reshape(-1, 28, 28, 3)
|
48 |
+
Data = Data / 255.0 # Normalizing the data
|
49 |
+
# Resize images to 32x32 pixels
|
50 |
+
Data_resized = resize(Data, [32, 32]).numpy() # Ensure conversion to NumPy array
|
51 |
+
return Data_resized
|
52 |
+
|
53 |
+
if file is not None:
|
54 |
+
df = pd.read_csv(file)
|
55 |
+
# Get first row
|
56 |
+
row = df.iloc[0]
|
57 |
+
|
58 |
+
# Load image
|
59 |
+
image = np.array(Image.open(row[0]))
|
60 |
+
# Reshape
|
61 |
+
img_reshaped = image_resize(row)
|
62 |
+
|
63 |
+
# Get prediction
|
64 |
+
pred = model.predict(img_reshaped)
|
65 |
+
label = np.argmax(pred)
|
66 |
+
|
67 |
+
label_map = {4: ('nv', ' melanocytic nevi'),
|
68 |
+
6: ('mel', 'melanoma'),
|
69 |
+
2: ('bkl', 'benign keratosis-like lesions'),
|
70 |
+
1: ('bcc' , ' basal cell carcinoma'),
|
71 |
+
5: ('vasc', 'pyogenic granulomas and hemorrhage'),
|
72 |
+
0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
|
73 |
+
3: ('df', 'dermatofibroma')}
|
74 |
+
|
75 |
+
if label in label_map:
|
76 |
+
label_name = label_map[label][0]
|
77 |
+
full_name = label_map[label][1]
|
78 |
+
|
79 |
+
# Display image and result
|
80 |
+
col1, col2 = st.columns(2)
|
81 |
+
with col1:
|
82 |
+
st.header("Input Image")
|
83 |
+
st.image(image)
|
84 |
+
with col2:
|
85 |
+
st.header("Prediction")
|
86 |
+
st.metric("Digit", full_name)
|
87 |
+
|
88 |
+
|
89 |
+
# import streamlit as st
|
90 |
+
# import predict_model # our prediction model
|
91 |
+
|
92 |
+
# # Label maps
|
93 |
+
# label_map = {0: ('akiec', 'Actinic keratoses'),
|
94 |
+
# 1: ('bcc', 'basal cell carcinoma'),
|
95 |
+
# # Rest of label map
|
96 |
+
# }
|
97 |
+
|
98 |
+
# # Get prediction
|
99 |
+
# img = st.file_uploader("Upload image")
|
100 |
+
# if img:
|
101 |
+
# pred_id = predict_model.get_prediction(img)
|
102 |
+
|
103 |
+
# # Display prediction
|
104 |
+
# if pred_id in label_map:
|
105 |
+
# label_name = label_map[pred_id][0]
|
106 |
+
# full_name = label_map[pred_id][1]
|
107 |
+
|
108 |
+
# st.success(f"Predicted Label: {label_name} - {full_name}")
|
109 |
+
# else:
|
110 |
+
# st.warning("Unknown label predicted")
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
# data_dir = 'hmnist_28_28_RGB.csv'
|
115 |
+
# data = pd.read_csv(data_dir)
|
116 |
+
# data.head()
|
117 |
+
|
118 |
+
# Label = data["label"]
|
119 |
+
# Data = data.drop(columns=["label"])
|
120 |
+
|
121 |
+
# data["label"].value_counts()
|
122 |
+
|
123 |
+
# classes = {4: ('nv', ' melanocytic nevi'),
|
124 |
+
# 6: ('mel', 'melanoma'),
|
125 |
+
# 2 :('bkl', 'benign keratosis-like lesions'),
|
126 |
+
# 1:('bcc' , ' basal cell carcinoma'),
|
127 |
+
# 5: ('vasc', ' pyogenic granulomas and hemorrhage'),
|
128 |
+
# 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
|
129 |
+
# 3: ('df', 'dermatofibroma')}
|
130 |
+
|
131 |
+
# from tensorflow.image import resize
|
132 |
+
|
133 |
+
# #preprocess data
|
134 |
+
# Label = data["label"]
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
# Label = to_categorical(Label, num_classes=7) # Assuming 7 classes
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# # Later in Streamlit...
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|