TouseefAhmad's picture
Update app.py
74c6467 verified
import gradio as gr
import json
from typing import Dict, List, Tuple, Set
class DSALearningRoadmap:
def __init__(self):
self.topics_data = {
"Arrays": {
"difficulty": "Beginner",
"prerequisites": [],
"description": "Linear data structure storing elements in contiguous memory locations",
"key_concepts": ["Indexing", "Traversal", "Insertion", "Deletion", "Searching"],
"learning_path": [
"Understand array basics and memory layout",
"Learn array operations (CRUD)",
"Practice basic array problems",
"Master array traversal patterns",
"Solve sliding window problems"
],
"time_estimate": "1-2 weeks",
"connects_to": ["Strings", "Sorting", "Searching", "Dynamic Programming", "Two Pointers"],
"important_problems": [
"Two Sum", "Maximum Subarray", "Rotate Array", "Merge Sorted Arrays", "Find Duplicates"
]
},
"Strings": {
"difficulty": "Beginner",
"prerequisites": ["Arrays"],
"description": "Sequence of characters, often implemented as character arrays",
"key_concepts": ["String manipulation", "Pattern matching", "Substring operations", "String comparison"],
"learning_path": [
"Learn string basics and operations",
"Practice string manipulation problems",
"Master substring and pattern matching",
"Learn string algorithms (KMP, Rabin-Karp)",
"Solve advanced string problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Arrays", "Hashing", "Tries", "Dynamic Programming"],
"important_problems": [
"Valid Palindrome", "Longest Substring Without Repeating Characters", "Group Anagrams", "String to Integer", "Implement strStr()"
]
},
"Linked Lists": {
"difficulty": "Beginner",
"prerequisites": ["Arrays"],
"description": "Linear data structure where elements are stored in nodes connected via pointers",
"key_concepts": ["Pointers", "Node operations", "Traversal", "Insertion", "Deletion"],
"learning_path": [
"Understand pointers and node structure",
"Learn basic linked list operations",
"Practice traversal and manipulation",
"Master different types (singly, doubly, circular)",
"Solve complex linked list problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Stacks", "Queues", "Trees", "Graphs", "Hashing"],
"important_problems": [
"Reverse Linked List", "Merge Two Sorted Lists", "Detect Cycle", "Remove Nth Node", "Intersection of Two Linked Lists"
]
},
"Stacks": {
"difficulty": "Beginner",
"prerequisites": ["Arrays", "Linked Lists"],
"description": "LIFO (Last In First Out) data structure",
"key_concepts": ["Push", "Pop", "Peek", "Stack overflow", "Applications"],
"learning_path": [
"Learn stack concept and operations",
"Implement stack using arrays and linked lists",
"Practice basic stack problems",
"Learn stack applications (expression evaluation, parsing)",
"Master advanced stack problems"
],
"time_estimate": "1-2 weeks",
"connects_to": ["Queues", "Recursion", "Trees", "Graphs", "Dynamic Programming"],
"important_problems": [
"Valid Parentheses", "Min Stack", "Evaluate Reverse Polish Notation", "Largest Rectangle in Histogram", "Daily Temperatures"
]
},
"Queues": {
"difficulty": "Beginner",
"prerequisites": ["Arrays", "Linked Lists"],
"description": "FIFO (First In First Out) data structure",
"key_concepts": ["Enqueue", "Dequeue", "Front", "Rear", "Circular queue"],
"learning_path": [
"Learn queue concept and operations",
"Implement queue using arrays and linked lists",
"Practice basic queue problems",
"Learn different types (circular, priority, deque)",
"Master BFS and queue applications"
],
"time_estimate": "1-2 weeks",
"connects_to": ["Stacks", "Trees", "Graphs", "BFS", "Priority Queues"],
"important_problems": [
"Implement Queue using Stacks", "Sliding Window Maximum", "Design Circular Queue", "Rotting Oranges", "First Unique Character"
]
},
"Recursion": {
"difficulty": "Intermediate",
"prerequisites": ["Arrays", "Stacks"],
"description": "Problem-solving technique where a function calls itself",
"key_concepts": ["Base case", "Recursive case", "Call stack", "Memoization", "Tail recursion"],
"learning_path": [
"Understand recursion concept and base cases",
"Practice simple recursive problems",
"Learn recursive patterns and techniques",
"Master backtracking using recursion",
"Optimize recursive solutions"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Dynamic Programming", "Trees", "Graphs", "Backtracking", "Divide and Conquer"],
"important_problems": [
"Fibonacci Sequence", "Factorial", "Tower of Hanoi", "Generate Parentheses", "Permutations"
]
},
"Sorting": {
"difficulty": "Intermediate",
"prerequisites": ["Arrays", "Recursion"],
"description": "Algorithms to arrange elements in a specific order",
"key_concepts": ["Comparison sorting", "Time complexity", "Space complexity", "Stability", "In-place sorting"],
"learning_path": [
"Learn basic sorting algorithms (bubble, selection, insertion)",
"Master efficient sorting algorithms (merge, quick, heap)",
"Understand time and space complexity analysis",
"Practice sorting-based problems",
"Learn specialized sorting techniques"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Arrays", "Divide and Conquer", "Heaps", "Searching", "Trees"],
"important_problems": [
"Merge Intervals", "Sort Colors", "Kth Largest Element", "Meeting Rooms", "Largest Number"
]
},
"Searching": {
"difficulty": "Intermediate",
"prerequisites": ["Arrays", "Recursion", "Sorting"],
"description": "Algorithms to find specific elements in data structures",
"key_concepts": ["Linear search", "Binary search", "Search space", "Invariants", "Applications"],
"learning_path": [
"Learn linear search and its applications",
"Master binary search and its variants",
"Practice search in rotated/modified arrays",
"Learn search in 2D arrays and matrices",
"Solve complex search problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Arrays", "Sorting", "Trees", "Graphs", "Two Pointers"],
"important_problems": [
"Binary Search", "Find First and Last Position", "Search in Rotated Array", "Find Peak Element", "Search 2D Matrix"
]
},
"Trees": {
"difficulty": "Intermediate",
"prerequisites": ["Linked Lists", "Recursion", "Stacks", "Queues"],
"description": "Hierarchical data structure with nodes connected by edges",
"key_concepts": ["Root", "Leaves", "Height", "Depth", "Traversals", "Binary trees"],
"learning_path": [
"Learn tree terminology and concepts",
"Master tree traversals (inorder, preorder, postorder)",
"Practice binary tree problems",
"Learn binary search trees (BST)",
"Solve advanced tree problems"
],
"time_estimate": "3-4 weeks",
"connects_to": ["Graphs", "Heaps", "Tries", "Dynamic Programming", "DFS", "BFS"],
"important_problems": [
"Maximum Depth of Binary Tree", "Validate Binary Search Tree", "Lowest Common Ancestor", "Binary Tree Level Order Traversal", "Serialize and Deserialize Binary Tree"
]
},
"Graphs": {
"difficulty": "Advanced",
"prerequisites": ["Trees", "Queues", "Stacks", "Recursion"],
"description": "Non-linear data structure consisting of vertices and edges",
"key_concepts": ["Vertices", "Edges", "Directed/Undirected", "Weighted/Unweighted", "Representation"],
"learning_path": [
"Learn graph terminology and representation",
"Master graph traversals (DFS, BFS)",
"Practice basic graph problems",
"Learn shortest path algorithms",
"Solve complex graph problems"
],
"time_estimate": "4-5 weeks",
"connects_to": ["Trees", "DFS", "BFS", "Dynamic Programming", "Greedy Algorithms"],
"important_problems": [
"Clone Graph", "Number of Islands", "Course Schedule", "Shortest Path in Binary Matrix", "Word Ladder"
]
},
"Dynamic Programming": {
"difficulty": "Advanced",
"prerequisites": ["Arrays", "Recursion", "Trees"],
"description": "Optimization technique using memoization to solve overlapping subproblems",
"key_concepts": ["Optimal substructure", "Overlapping subproblems", "Memoization", "Tabulation", "State transitions"],
"learning_path": [
"Understand DP concepts and when to use",
"Learn basic DP patterns (fibonacci, climbing stairs)",
"Practice 1D DP problems",
"Master 2D DP problems",
"Solve complex DP problems"
],
"time_estimate": "4-6 weeks",
"connects_to": ["Arrays", "Strings", "Trees", "Graphs", "Greedy Algorithms"],
"important_problems": [
"Climbing Stairs", "House Robber", "Coin Change", "Longest Common Subsequence", "Edit Distance"
]
},
"Hashing": {
"difficulty": "Intermediate",
"prerequisites": ["Arrays", "Strings"],
"description": "Technique for fast data retrieval using hash functions",
"key_concepts": ["Hash functions", "Hash tables", "Collision resolution", "Load factor", "Applications"],
"learning_path": [
"Learn hash function concepts",
"Understand hash table implementation",
"Practice basic hashing problems",
"Learn collision resolution techniques",
"Master advanced hashing applications"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Arrays", "Strings", "Sets", "Maps", "Caching"],
"important_problems": [
"Two Sum", "Group Anagrams", "First Non-Repeating Character", "Longest Substring Without Repeating Characters", "Design HashSet"
]
},
"Heaps": {
"difficulty": "Advanced",
"prerequisites": ["Trees", "Arrays", "Sorting"],
"description": "Complete binary tree with heap property (min-heap or max-heap)",
"key_concepts": ["Heap property", "Heapify", "Priority queue", "Heap operations", "Applications"],
"learning_path": [
"Learn heap concepts and properties",
"Implement heap operations",
"Practice basic heap problems",
"Master priority queue applications",
"Solve complex heap problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Trees", "Sorting", "Graphs", "Greedy Algorithms", "Priority Queues"],
"important_problems": [
"Kth Largest Element", "Merge K Sorted Lists", "Top K Frequent Elements", "Find Median from Data Stream", "Task Scheduler"
]
},
"Tries": {
"difficulty": "Advanced",
"prerequisites": ["Trees", "Strings"],
"description": "Tree-like data structure for storing strings efficiently",
"key_concepts": ["Prefix tree", "Autocomplete", "Word search", "Memory optimization", "Applications"],
"learning_path": [
"Learn trie structure and operations",
"Implement basic trie functionality",
"Practice word-based problems",
"Master prefix matching applications",
"Solve complex trie problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Trees", "Strings", "DFS", "Backtracking"],
"important_problems": [
"Implement Trie", "Word Search II", "Design Add and Search Words", "Longest Word in Dictionary", "Replace Words"
]
},
"Two Pointers": {
"difficulty": "Intermediate",
"prerequisites": ["Arrays", "Strings", "Sorting"],
"description": "Technique using two pointers to solve problems efficiently",
"key_concepts": ["Left-right pointers", "Fast-slow pointers", "Sliding window", "Meet in middle", "Optimization"],
"learning_path": [
"Learn two-pointer technique basics",
"Practice left-right pointer problems",
"Master fast-slow pointer technique",
"Learn sliding window applications",
"Solve complex two-pointer problems"
],
"time_estimate": "2-3 weeks",
"connects_to": ["Arrays", "Strings", "Linked Lists", "Sorting", "Searching"],
"important_problems": [
"Two Sum II", "3Sum", "Container With Most Water", "Trapping Rain Water", "Longest Substring Without Repeating Characters"
]
},
"Greedy Algorithms": {
"difficulty": "Advanced",
"prerequisites": ["Sorting", "Arrays", "Graphs"],
"description": "Problem-solving technique making locally optimal choices",
"key_concepts": ["Greedy choice", "Local optimization", "Proof techniques", "Activity selection", "Optimization"],
"learning_path": [
"Learn greedy algorithm concepts",
"Practice basic greedy problems",
"Master interval scheduling problems",
"Learn graph-based greedy algorithms",
"Solve complex greedy problems"
],
"time_estimate": "3-4 weeks",
"connects_to": ["Sorting", "Graphs", "Dynamic Programming", "Heaps"],
"important_problems": [
"Activity Selection", "Fractional Knapsack", "Minimum Spanning Tree", "Huffman Coding", "Gas Station"
]
},
"Backtracking": {
"difficulty": "Advanced",
"prerequisites": ["Recursion", "Trees", "Arrays"],
"description": "Algorithmic technique for finding solutions by exploring all possibilities",
"key_concepts": ["State space", "Pruning", "Constraint satisfaction", "Recursive exploration", "Optimization"],
"learning_path": [
"Learn backtracking concepts",
"Practice basic backtracking problems",
"Master constraint satisfaction problems",
"Learn optimization techniques",
"Solve complex backtracking problems"
],
"time_estimate": "3-4 weeks",
"connects_to": ["Recursion", "Trees", "Graphs", "Dynamic Programming"],
"important_problems": [
"N-Queens", "Sudoku Solver", "Word Search", "Combination Sum", "Palindrome Partitioning"
]
},
"Divide and Conquer": {
"difficulty": "Advanced",
"prerequisites": ["Recursion", "Sorting", "Arrays"],
"description": "Problem-solving technique dividing problems into smaller subproblems",
"key_concepts": ["Divide", "Conquer", "Combine", "Recurrence relations", "Master theorem"],
"learning_path": [
"Learn divide and conquer concepts",
"Practice basic divide and conquer problems",
"Master sorting algorithms using D&C",
"Learn advanced applications",
"Analyze time complexity"
],
"time_estimate": "3-4 weeks",
"connects_to": ["Recursion", "Sorting", "Trees", "Dynamic Programming"],
"important_problems": [
"Merge Sort", "Quick Sort", "Maximum Subarray", "Closest Pair of Points", "Strassen's Matrix Multiplication"
]
}
}
def get_topic_roadmap(self, topic_name: str) -> str:
"""Generate detailed roadmap for a specific topic"""
if topic_name not in self.topics_data:
return "❌ Topic not found! Please select a valid topic."
topic = self.topics_data[topic_name]
# Build the roadmap string
roadmap = f"""
# 🎯 {topic_name} Learning Roadmap
## πŸ“Š Overview
**Difficulty Level:** {topic['difficulty']}
**Estimated Time:** {topic['time_estimate']}
**Description:** {topic['description']}
## πŸ”— Prerequisites
"""
if topic['prerequisites']:
roadmap += "**You should learn these topics first:**\n"
for prereq in topic['prerequisites']:
roadmap += f"β€’ {prereq}\n"
else:
roadmap += "**Great news!** This is a foundational topic - no prerequisites needed! πŸŽ‰\n"
roadmap += f"""
## πŸ—ΊοΈ Learning Path
**Follow this step-by-step approach:**
"""
for i, step in enumerate(topic['learning_path'], 1):
roadmap += f"{i}. {step}\n"
roadmap += f"""
## πŸ”‘ Key Concepts to Master
"""
for concept in topic['key_concepts']:
roadmap += f"β€’ {concept}\n"
roadmap += f"""
## πŸ’‘ Important Problems to Practice
"""
for problem in topic['important_problems']:
roadmap += f"β€’ {problem}\n"
roadmap += f"""
## 🌐 Connected Topics
**After mastering {topic_name}, you'll be ready for:**
"""
for connected in topic['connects_to']:
roadmap += f"β€’ {connected}\n"
return roadmap
def get_prerequisites_chain(self, topic_name: str) -> str:
"""Get the complete prerequisite chain for a topic"""
if topic_name not in self.topics_data:
return "❌ Topic not found!"
visited = set()
chain = []
def dfs_prerequisites(topic):
if topic in visited or topic not in self.topics_data:
return
visited.add(topic)
# Add prerequisites first
for prereq in self.topics_data[topic]['prerequisites']:
dfs_prerequisites(prereq)
chain.append(topic)
dfs_prerequisites(topic_name)
if len(chain) <= 1:
return f"πŸŽ‰ **{topic_name}** is a foundational topic - you can start learning it right away!"
result = f"πŸ“š **Complete Learning Path to Master {topic_name}:**\n\n"
for i, topic in enumerate(chain, 1):
difficulty = self.topics_data[topic]['difficulty']
time_est = self.topics_data[topic]['time_estimate']
if i == len(chain):
result += f"🎯 **{i}. {topic}** (Your Target!) \n"
else:
result += f"πŸ“– **{i}. {topic}** \n"
result += f" *Difficulty: {difficulty} | Time: {time_est}*\n\n"
total_topics = len(chain)
result += f"**Total Topics to Cover:** {total_topics}\n"
result += f"**Estimated Total Time:** {self._estimate_total_time(chain)}\n"
return result
def _estimate_total_time(self, chain: List[str]) -> str:
"""Estimate total time needed for a chain of topics"""
total_weeks = 0
for topic in chain:
time_str = self.topics_data[topic]['time_estimate']
# Extract weeks from string like "2-3 weeks"
weeks = time_str.split()[0].split('-')
avg_weeks = (int(weeks[0]) + int(weeks[-1])) / 2
total_weeks += avg_weeks
return f"{int(total_weeks)} weeks"
def get_topic_connections(self, topic_name: str) -> str:
"""Show how a topic connects to other topics"""
if topic_name not in self.topics_data:
return "❌ Topic not found!"
topic = self.topics_data[topic_name]
result = f"πŸ”— **Topic Interconnections for {topic_name}**\n\n"
# Prerequisites
result += "**πŸ“š Prerequisites (Learn these first):**\n"
if topic['prerequisites']:
for prereq in topic['prerequisites']:
result += f"β€’ {prereq}\n"
else:
result += "β€’ None - This is a foundational topic! πŸŽ‰\n"
# What connects to this topic
result += f"\n**➑️ What {topic_name} enables:**\n"
for connected in topic['connects_to']:
result += f"β€’ {connected}\n"
# Find what topics depend on this one
dependents = []
for other_topic, other_data in self.topics_data.items():
if topic_name in other_data['prerequisites']:
dependents.append(other_topic)
if dependents:
result += f"\n**🎯 Topics that require {topic_name}:**\n"
for dependent in dependents:
result += f"β€’ {dependent}\n"
return result
def get_difficulty_based_roadmap(self, difficulty: str) -> str:
"""Get all topics for a specific difficulty level"""
topics_by_difficulty = {
'Beginner': [],
'Intermediate': [],
'Advanced': []
}
for topic_name, topic_data in self.topics_data.items():
topics_by_difficulty[topic_data['difficulty']].append(topic_name)
if difficulty not in topics_by_difficulty:
return "❌ Invalid difficulty level!"
result = f"πŸ“Š **{difficulty} Level DSA Topics**\n\n"
topics = topics_by_difficulty[difficulty]
if not topics:
result += "No topics found for this difficulty level."
return result
for i, topic in enumerate(topics, 1):
topic_data = self.topics_data[topic]
result += f"**{i}. {topic}**\n"
result += f" *Time: {topic_data['time_estimate']}*\n"
result += f" *{topic_data['description']}*\n\n"
return result
def get_all_topics_overview(self) -> str:
"""Get overview of all topics with their relationships"""
result = "πŸ—ΊοΈ **Complete DSA Topics Overview**\n\n"
# Group by difficulty
by_difficulty = {'Beginner': [], 'Intermediate': [], 'Advanced': []}
for topic, data in self.topics_data.items():
by_difficulty[data['difficulty']].append(topic)
for difficulty in ['Beginner', 'Intermediate', 'Advanced']:
result += f"## {difficulty} Topics\n"
for topic in by_difficulty[difficulty]:
result += f"β€’ **{topic}** ({self.topics_data[topic]['time_estimate']})\n"
result += "\n"
result += "**πŸ’‘ Tips:**\n"
result += "β€’ Start with Beginner topics if you're new to DSA\n"
result += "β€’ Each topic builds upon previous knowledge\n"
result += "β€’ Practice problems regularly to reinforce concepts\n"
result += "β€’ Focus on understanding connections between topics\n"
return result
# Initialize the DSA roadmap system
dsa_system = DSALearningRoadmap()
# Get list of all topics for dropdown
all_topics = list(dsa_system.topics_data.keys())
difficulty_levels = ['All', 'Beginner', 'Intermediate', 'Advanced']
def generate_roadmap(topic_name):
"""Generate roadmap for selected topic"""
return dsa_system.get_topic_roadmap(topic_name)
def show_prerequisites_chain(topic_name):
"""Show complete prerequisite chain"""
return dsa_system.get_prerequisites_chain(topic_name)
def show_topic_connections(topic_name):
"""Show topic interconnections"""
return dsa_system.get_topic_connections(topic_name)
def show_difficulty_roadmap(difficulty):
"""Show topics by difficulty"""
if difficulty == 'All':
return dsa_system.get_all_topics_overview()
return dsa_system.get_difficulty_based_roadmap(difficulty)
# Create the Gradio interface
with gr.Blocks(title="🎯 DSA Learning Roadmap", theme=gr.themes.Default()) as app:
gr.Markdown("""
# 🎯 DSA Learning Roadmap Generator
**Solve the problem of not knowing DSA prerequisites!**
This tool helps you understand:
- πŸ“š What to learn before tackling any DSA topic
- πŸ—ΊοΈ Step-by-step learning paths
- πŸ”— How topics interconnect with each other
- ⏱️ Time estimates for mastering each topic
Select any topic below to get your personalized roadmap!
""")
with gr.Tabs():
# Tab 1: Individual Topic Roadmap
with gr.TabItem("πŸ“– Topic Roadmap"):
gr.Markdown("### Get detailed roadmap for any DSA topic")
topic_dropdown = gr.Dropdown(
choices=all_topics,
label="🎯 Select a DSA Topic",
value="Arrays",
info="Choose any topic to get a complete learning roadmap"
)
generate_btn = gr.Button("πŸš€ Generate Roadmap", variant="primary")
roadmap_output = gr.Markdown(label="πŸ“‹ Your Learning Roadmap")
generate_btn.click(
fn=generate_roadmap,
inputs=topic_dropdown,
outputs=roadmap_output
)
# Auto-generate on selection change
topic_dropdown.change(
fn=generate_roadmap,
inputs=topic_dropdown,
outputs=roadmap_output
)
# Tab 2: Prerequisites Chain
with gr.TabItem("πŸ”— Prerequisites Chain"):
gr.Markdown("### See the complete learning path to master any topic")
prereq_dropdown = gr.Dropdown(
choices=all_topics,
label="🎯 Select Target Topic",
value="Dynamic Programming",
info="See everything you need to learn before mastering this topic"
)
prereq_btn = gr.Button("πŸ“š Show Learning Path", variant="primary")
prereq_output = gr.Markdown(label="πŸ“‹ Complete Learning Path")
prereq_btn.click(
fn=show_prerequisites_chain,
inputs=prereq_dropdown,
outputs=prereq_output
)
prereq_dropdown.change(
fn=show_prerequisites_chain,
inputs=prereq_dropdown,
outputs=prereq_output
)
# Tab 3: Topic Connections
with gr.TabItem("🌐 Topic Connections"):
gr.Markdown("### Understand how topics connect to each other")
connection_dropdown = gr.Dropdown(
choices=all_topics,
label="🎯 Select Topic",
value="Trees",
info="See how this topic connects to other DSA concepts"
)
connection_btn = gr.Button("πŸ”— Show Connections", variant="primary")
connection_output = gr.Markdown(label="πŸ“‹ Topic Interconnections")
connection_btn.click(
fn=show_topic_connections,
inputs=connection_dropdown,
outputs=connection_output
)
connection_dropdown.change(
fn=show_topic_connections,
inputs=connection_dropdown,
outputs=connection_output
)
# Tab 4: Difficulty-based Overview
with gr.TabItem("πŸ“Š By Difficulty"):
gr.Markdown("### Browse topics by difficulty level")
difficulty_dropdown = gr.Dropdown(
choices=difficulty_levels,
label="πŸ“ˆ Select Difficulty Level",
value="All",
info="View topics grouped by difficulty"
)
difficulty_btn = gr.Button("πŸ“Š Show Topics", variant="primary")
difficulty_output = gr.Markdown(label="πŸ“‹ Topics by Difficulty")
difficulty_btn.click(
fn=show_difficulty_roadmap,
inputs=difficulty_dropdown,
outputs=difficulty_output
)
difficulty_dropdown.change(
fn=show_difficulty_roadmap,
inputs=difficulty_dropdown,
outputs=difficulty_output
)
# Footer
gr.Markdown("""
---
### πŸ’‘ How to Use This Tool:
1. **Topic Roadmap**: Get detailed learning plan for any specific topic
2. **Prerequisites Chain**: See exactly what to learn before your target topic
3. **Topic Connections**: Understand how topics relate to each other
4. **By Difficulty**: Browse topics based on your current skill level
### 🎯 Pro Tips:
- Start with **Beginner** topics if you're new to DSA
- Follow the **Prerequisites Chain** for optimal learning order
- Practice the **Important Problems** listed in each roadmap
- Use **Topic Connections** to plan your learning journey
**Happy Learning! πŸš€**
""")
# Launch the app
if __name__ == "__main__":
app.launch(share=True)