Spaces:
Sleeping
Sleeping
Tonioesparza
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -59,7 +59,7 @@ refiner.to("cuda")
|
|
59 |
MAX_SEED = np.iinfo(np.int32).max
|
60 |
MAX_IMAGE_SIZE = 1024
|
61 |
|
62 |
-
def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,
|
63 |
|
64 |
###pro_encode = pipe_cn.encode_text(prompt)
|
65 |
|
@@ -70,10 +70,10 @@ def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,fracc=floa
|
|
70 |
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"},
|
71 |
2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png",
|
72 |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png",
|
73 |
-
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/
|
74 |
3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png",
|
75 |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png",
|
76 |
-
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/
|
77 |
### mask init
|
78 |
|
79 |
output_height = 1024
|
@@ -100,26 +100,34 @@ def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,fracc=floa
|
|
100 |
|
101 |
images_CN = [depth_image, canny_image]
|
102 |
|
|
|
|
|
103 |
### inference
|
104 |
|
|
|
|
|
105 |
results = pipe_CN(
|
106 |
prompt=prompt,
|
107 |
ip_adapter_image=ip_images,
|
108 |
negative_prompt="deformed, ugly, wrong proportion, low res, worst quality, low quality,text,watermark",
|
|
|
109 |
num_inference_steps=n_steps,
|
110 |
num_images_per_prompt=1,
|
111 |
-
denoising_end=
|
112 |
image=images_CN,
|
113 |
output_type="latent",
|
114 |
-
|
|
|
|
|
115 |
cross_attention_kwargs={"ip_adapter_masks": masks}
|
116 |
).images[0]
|
117 |
|
118 |
|
119 |
image = refiner(
|
120 |
prompt=prompt,
|
|
|
121 |
num_inference_steps=num_inference_steps,
|
122 |
-
denoising_start=
|
123 |
image=results,
|
124 |
).images[0]
|
125 |
|
@@ -184,13 +192,6 @@ with gr.Blocks(css=css) as demo:
|
|
184 |
|
185 |
with gr.Row():
|
186 |
|
187 |
-
fracc = gr.Slider(
|
188 |
-
label="refinement_scale",
|
189 |
-
minimum=0.8,
|
190 |
-
maximum=0.95,
|
191 |
-
step=0.01,
|
192 |
-
value=0.8, #Replace with defaults that work for your model
|
193 |
-
)
|
194 |
|
195 |
num_inference_steps = gr.Slider(
|
196 |
label="Number of inference steps",
|
@@ -207,7 +208,7 @@ with gr.Blocks(css=css) as demo:
|
|
207 |
gr.on(
|
208 |
triggers=[run_button.click, prompt.submit],
|
209 |
fn = ourhood_inference,
|
210 |
-
inputs = [prompt, num_inference_steps, perspective,
|
211 |
outputs = [result]
|
212 |
)
|
213 |
|
|
|
59 |
MAX_SEED = np.iinfo(np.int32).max
|
60 |
MAX_IMAGE_SIZE = 1024
|
61 |
|
62 |
+
def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,seed):
|
63 |
|
64 |
###pro_encode = pipe_cn.encode_text(prompt)
|
65 |
|
|
|
70 |
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"},
|
71 |
2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png",
|
72 |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png",
|
73 |
+
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_C_solo.png"},
|
74 |
3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png",
|
75 |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png",
|
76 |
+
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_B_solo.png"}}
|
77 |
### mask init
|
78 |
|
79 |
output_height = 1024
|
|
|
100 |
|
101 |
images_CN = [depth_image, canny_image]
|
102 |
|
103 |
+
|
104 |
+
|
105 |
### inference
|
106 |
|
107 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
108 |
+
|
109 |
results = pipe_CN(
|
110 |
prompt=prompt,
|
111 |
ip_adapter_image=ip_images,
|
112 |
negative_prompt="deformed, ugly, wrong proportion, low res, worst quality, low quality,text,watermark",
|
113 |
+
generator=generator,
|
114 |
num_inference_steps=n_steps,
|
115 |
num_images_per_prompt=1,
|
116 |
+
denoising_end=0.95,
|
117 |
image=images_CN,
|
118 |
output_type="latent",
|
119 |
+
control_guidance_start=[0.0, 0.35],
|
120 |
+
control_guidance_end=[0.35, 1.0],
|
121 |
+
controlnet_conditioning_scale=[0.5, 1.0],
|
122 |
cross_attention_kwargs={"ip_adapter_masks": masks}
|
123 |
).images[0]
|
124 |
|
125 |
|
126 |
image = refiner(
|
127 |
prompt=prompt,
|
128 |
+
generator=generator,
|
129 |
num_inference_steps=num_inference_steps,
|
130 |
+
denoising_start=0.95,
|
131 |
image=results,
|
132 |
).images[0]
|
133 |
|
|
|
192 |
|
193 |
with gr.Row():
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
num_inference_steps = gr.Slider(
|
197 |
label="Number of inference steps",
|
|
|
208 |
gr.on(
|
209 |
triggers=[run_button.click, prompt.submit],
|
210 |
fn = ourhood_inference,
|
211 |
+
inputs = [prompt, num_inference_steps, perspective, seed],
|
212 |
outputs = [result]
|
213 |
)
|
214 |
|