Spaces:
Paused
Paused
import io | |
import pandas as pd | |
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
import hashlib | |
import pypdfium2 | |
from texify.inference import batch_inference | |
from texify.model.model import load_model | |
from texify.model.processor import load_processor | |
from texify.settings import settings | |
import subprocess | |
import re | |
from PIL import Image | |
MAX_WIDTH = 1000 | |
def replace_katex_invalid(string): | |
# KaTeX cannot render all LaTeX, so we need to replace some things | |
string = re.sub(r'\\tag\{.*?\}', '', string) | |
string = re.sub(r'\\Big\{(.*?)\}|\\big\{(.*?)\}', r'\1\2', string) | |
return string | |
def load_model_cached(): | |
return load_model() | |
def load_processor_cached(): | |
return load_processor() | |
def infer_image(pil_image, bbox, temperature): | |
input_img = pil_image.crop(bbox) | |
model_output = batch_inference([input_img], model, processor, temperature=temperature) | |
return model_output[0] | |
def open_pdf(pdf_file): | |
stream = io.BytesIO(pdf_file.getvalue()) | |
return pypdfium2.PdfDocument(stream) | |
def get_page_image(pdf_file, page_num, dpi=96): | |
doc = open_pdf(pdf_file) | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=[page_num - 1], | |
scale=dpi / 72, | |
) | |
png = list(renderer)[0] | |
png_image = png.convert("RGB") | |
return png_image | |
def get_uploaded_image(in_file): | |
return Image.open(in_file).convert("RGB") | |
def page_count(pdf_file): | |
doc = open_pdf(pdf_file) | |
return len(doc) | |
def get_canvas_hash(pil_image): | |
return hashlib.md5(pil_image.tobytes()).hexdigest() | |
def get_image_size(pil_image): | |
if pil_image is None: | |
return 800, 600 | |
height, width = pil_image.height, pil_image.width | |
if width > MAX_WIDTH: | |
scale = MAX_WIDTH / width | |
height = int(height * scale) | |
width = MAX_WIDTH | |
return height, width | |
st.set_page_config(layout="wide") | |
top_message = """### Texify | |
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right. | |
If you have already cropped your image, select "OCR image" in the sidebar instead. | |
""" | |
st.markdown(top_message) | |
col1, col2 = st.columns([.7, .3]) | |
model = load_model_cached() | |
processor = load_processor_cached() | |
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) | |
if in_file is None: | |
st.stop() | |
filetype = in_file.type | |
whole_image = False | |
if "pdf" in filetype: | |
page_count = page_count(in_file) | |
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) | |
pil_image = get_page_image(in_file, page_number) | |
else: | |
pil_image = get_uploaded_image(in_file) | |
whole_image = st.sidebar.button("OCR image") | |
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05) | |
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas" | |
with col1: | |
# Create a canvas component | |
canvas_result = st_canvas( | |
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity | |
stroke_width=1, | |
stroke_color="#FFAA00", | |
background_color="#FFF", | |
background_image=pil_image, | |
update_streamlit=True, | |
height=get_image_size(pil_image)[0], | |
width=get_image_size(pil_image)[1], | |
drawing_mode="rect", | |
point_display_radius=0, | |
key=canvas_hash, | |
) | |
if canvas_result.json_data is not None or whole_image: | |
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow | |
bbox_list = None | |
if objects.shape[0] > 0: | |
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]] | |
boxes["right"] = boxes["left"] + boxes["width"] | |
boxes["bottom"] = boxes["top"] + boxes["height"] | |
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist() | |
if whole_image: | |
bbox_list = [(0, 0, pil_image.width, pil_image.height)] | |
if bbox_list: | |
with col2: | |
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list] | |
for idx, inference in enumerate(reversed(inferences)): | |
st.markdown(f"### {len(inferences) - idx}") | |
katex_markdown = replace_katex_invalid(inference) | |
st.markdown(katex_markdown) | |
st.code(inference) | |
st.divider() | |
with col2: | |
tips = """ | |
### Usage tips | |
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info. | |
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple. | |
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is. | |
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere. | |
""" | |
st.markdown(tips) |