Spaces:
Paused
Paused
import os | |
import math | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import gradio as gr | |
import sentencepiece | |
title = "# ²Welcome to 🙋🏻♂️Tonic's🌷Tulu Chat!" | |
description = """[allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b) and larger Tulu-2 models are Instruct Llama Finetunes using the [mistralai/Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) recipe. You can use [allenai/tulu-2-13b](https://huggingface.co/allenai/tulu-2-13b) here via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TuluDemo?duplicate=true) See also the large model here : [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!. [Add this Space as a discord bot to your server by clicking this link](https://discord.com/oauth2/authorize?client_id=1176628808212828231&scope=bot+applications.commands&permissions=326417525824). Big thanks to 🤗Huggingface Organisation for the🫂Community Grant""" | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50' | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_name = "allenai/tulu-2-dpo-13b" | |
tokenizer = AutoTokenizer.from_pretrained("allenai/tulu-2-dpo-13b") | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") | |
class TuluChatBot: | |
def __init__(self, model, tokenizer, system_message="You are 🌷Tulu, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."): | |
self.model = model | |
self.tokenizer = tokenizer | |
self.system_message = system_message | |
def set_system_message(self, new_system_message): | |
self.system_message = new_system_message | |
def format_prompt(self, user_message): | |
prompt = f"<|assistant|>\n {self.system_message}\n\n <|user|>{user_message}\n\n<|assistant|>\n" | |
return prompt | |
def predict(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample): | |
prompt = self.format_prompt(user_message) | |
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False) | |
input_ids = inputs["input_ids"].to(self.model.device) | |
attention_mask = inputs["attention_mask"].to(self.model.device) | |
output_ids = self.model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_length=input_ids.shape[1] + max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=do_sample | |
) | |
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return response | |
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): | |
Tulu_bot.set_system_message(system_message) | |
if not do_sample: | |
max_length = 780 | |
temperature = 1.2 | |
top_p = 0.9 | |
repetition_penalty = 0.9 | |
response = Tulu_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample) | |
return response | |
Tulu_bot = TuluChatBot(model, tokenizer) | |
with gr.Blocks(theme = "ParityError/Anime") as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
system_message = gr.Textbox(label="Optional 🌷Tulu Assistant Message", lines=2) | |
user_message = gr.Textbox(label="Your Message", lines=3) | |
with gr.Row(): | |
do_sample = gr.Checkbox(label="Advanced", value=False) | |
with gr.Accordion("Advanced Settings", open=lambda do_sample: do_sample): | |
with gr.Row(): | |
max_new_tokens = gr.Slider(label="Max new tokens", value=780, minimum=550, maximum=3200, step=1) | |
temperature = gr.Slider(label="Temperature", value=0.3, minimum=0.1, maximum=1.0, step=0.1) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05) | |
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05) | |
submit_button = gr.Button("Submit") | |
output_text = gr.Textbox(label="🌷Tulu Response") | |
def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): | |
return gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample) | |
submit_button.click( | |
process, | |
inputs=[user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample], | |
outputs=output_text | |
) | |
demo.launch() |