MambaTonic / app.py
reach-vb's picture
reach-vb HF staff
Fix repo path (#4)
f034bba
raw
history blame
14 kB
from __future__ import annotations
import os
import pathlib
import gradio as gr
import numpy as np
import torch
import torchaudio
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from huggingface_hub import snapshot_download
from seamless_communication.inference import Translator
from lang_list import (
ASR_TARGET_LANGUAGE_NAMES,
LANGUAGE_NAME_TO_CODE,
S2ST_TARGET_LANGUAGE_NAMES,
S2TT_TARGET_LANGUAGE_NAMES,
T2ST_TARGET_LANGUAGE_NAMES,
T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
)
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
if not CHECKPOINTS_PATH.exists():
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
asset_store.env_resolvers.clear()
asset_store.env_resolvers.append(lambda: "demo")
demo_metadata = [
{
"name": "seamlessM4T_v2_large@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
},
{
"name": "vocoder_v2@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt",
},
]
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
DESCRIPTION = """\
# SeamlessM4T
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models.
"""
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
DEFAULT_TARGET_LANGUAGE = "French"
if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
translator = Translator(
model_name_or_card="seamlessM4T_v2_large",
vocoder_name_or_card="vocoder_v2",
device=device,
dtype=dtype,
apply_mintox=True,
)
def preprocess_audio(input_audio: str) -> None:
arr, org_sr = torchaudio.load(input_audio)
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
if new_arr.shape[1] > max_length:
new_arr = new_arr[:, :max_length]
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
def run_s2st(
input_audio: str, source_language: str, target_language: str
) -> tuple[tuple[int, np.ndarray] | None, str]:
preprocess_audio(input_audio)
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
out_texts, out_audios = translator.predict(
input=input_audio,
task_str="S2ST",
src_lang=source_language_code,
tgt_lang=target_language_code,
)
out_text = str(out_texts[0])
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
preprocess_audio(input_audio)
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
out_texts, _ = translator.predict(
input=input_audio,
task_str="S2TT",
src_lang=source_language_code,
tgt_lang=target_language_code,
)
return str(out_texts[0])
def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
out_texts, out_audios = translator.predict(
input=input_text,
task_str="T2ST",
src_lang=source_language_code,
tgt_lang=target_language_code,
)
out_text = str(out_texts[0])
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
out_texts, _ = translator.predict(
input=input_text,
task_str="T2TT",
src_lang=source_language_code,
tgt_lang=target_language_code,
)
return str(out_texts[0])
def run_asr(input_audio: str, target_language: str) -> str:
preprocess_audio(input_audio)
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
out_texts, _ = translator.predict(
input=input_audio,
task_str="ASR",
src_lang=target_language_code,
tgt_lang=target_language_code,
)
return str(out_texts[0])
with gr.Blocks() as demo_s2st:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
source_language = gr.Dropdown(
label="Source language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=S2ST_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
with gr.Group():
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/sample_input.mp3", "English", "French"],
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
["assets/sample_input_2.mp3", "English", "Hindi"],
["assets/sample_input_2.mp3", "English", "Spanish"],
],
inputs=[input_audio, source_language, target_language],
outputs=[output_audio, output_text],
fn=run_s2st,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_s2st,
inputs=[input_audio, source_language, target_language],
outputs=[output_audio, output_text],
api_name="s2st",
)
with gr.Blocks() as demo_s2tt:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
source_language = gr.Dropdown(
label="Source language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=S2TT_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/sample_input.mp3", "English", "French"],
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
["assets/sample_input_2.mp3", "English", "Hindi"],
["assets/sample_input_2.mp3", "English", "Spanish"],
],
inputs=[input_audio, source_language, target_language],
outputs=output_text,
fn=run_s2tt,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_s2tt,
inputs=[input_audio, source_language, target_language],
outputs=output_text,
api_name="s2tt",
)
with gr.Blocks() as demo_t2st:
with gr.Row():
with gr.Column():
with gr.Group():
input_text = gr.Textbox(label="Input text")
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=T2ST_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
with gr.Group():
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
[
"My favorite animal is the elephant.",
"English",
"French",
],
[
"My favorite animal is the elephant.",
"English",
"Mandarin Chinese",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Hindi",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Spanish",
],
],
inputs=[input_text, source_language, target_language],
outputs=[output_audio, output_text],
fn=run_t2st,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
gr.on(
triggers=[input_text.submit, btn.click],
fn=run_t2st,
inputs=[input_text, source_language, target_language],
outputs=[output_audio, output_text],
api_name="t2st",
)
with gr.Blocks() as demo_t2tt:
with gr.Row():
with gr.Column():
with gr.Group():
input_text = gr.Textbox(label="Input text")
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=T2TT_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
[
"My favorite animal is the elephant.",
"English",
"French",
],
[
"My favorite animal is the elephant.",
"English",
"Mandarin Chinese",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Hindi",
],
[
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
"English",
"Spanish",
],
],
inputs=[input_text, source_language, target_language],
outputs=output_text,
fn=run_t2tt,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
gr.on(
triggers=[input_text.submit, btn.click],
fn=run_t2tt,
inputs=[input_text, source_language, target_language],
outputs=output_text,
api_name="t2tt",
)
with gr.Blocks() as demo_asr:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
target_language = gr.Dropdown(
label="Target language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/sample_input.mp3", "English"],
["assets/sample_input_2.mp3", "English"],
],
inputs=[input_audio, target_language],
outputs=output_text,
fn=run_asr,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_asr,
inputs=[input_audio, target_language],
outputs=output_text,
api_name="asr",
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Tabs():
with gr.Tab(label="S2ST"):
demo_s2st.render()
with gr.Tab(label="S2TT"):
demo_s2tt.render()
with gr.Tab(label="T2ST"):
demo_t2st.render()
with gr.Tab(label="T2TT"):
demo_t2tt.render()
with gr.Tab(label="ASR"):
demo_asr.render()
if __name__ == "__main__":
demo.queue(max_size=50).launch()