Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
from textwrap import wrap
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
def wrap_text(text, width=90):
|
9 |
+
lines = text.split('\n')
|
10 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
11 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
12 |
+
return wrapped_text
|
13 |
+
|
14 |
+
@spaces.GPU
|
15 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
16 |
+
# Combine user input and system prompt
|
17 |
+
formatted_input = f"<s> [INST] {example_instruction} [/INST] {example_answer}</s> [INST] {system_prompt} [/INST]"
|
18 |
+
|
19 |
+
# Encode the input text
|
20 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
21 |
+
model_inputs = encodeds.to(device)
|
22 |
+
|
23 |
+
# Generate a response using the model
|
24 |
+
output = model.generate(
|
25 |
+
**model_inputs,
|
26 |
+
max_length=max_length,
|
27 |
+
use_cache=True,
|
28 |
+
early_stopping=True,
|
29 |
+
bos_token_id=model.config.bos_token_id,
|
30 |
+
eos_token_id=model.config.eos_token_id,
|
31 |
+
pad_token_id=model.config.eos_token_id,
|
32 |
+
temperature=0.1,
|
33 |
+
do_sample=True
|
34 |
+
)
|
35 |
+
|
36 |
+
# Decode the response
|
37 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
38 |
+
|
39 |
+
return response_text
|
40 |
+
|
41 |
+
# Define the device
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
|
44 |
+
# Use the base model's ID
|
45 |
+
model_id = "SuperAGI/SAM"
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id = model_id, trust_remote_code=True)
|
48 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
49 |
+
# tokenizer.padding_side = 'left'
|
50 |
+
|
51 |
+
# Specify the configuration class for the model
|
52 |
+
#model_config = AutoConfig.from_pretrained(base_model_id)
|
53 |
+
|
54 |
+
model = MistralForCaumodel = AutoModelForCausalLM.from_pretrained(model_id)
|
55 |
+
|
56 |
+
class ChatBot:
|
57 |
+
def __init__(self):
|
58 |
+
self.history = []
|
59 |
+
|
60 |
+
class ChatBot:
|
61 |
+
def __init__(self):
|
62 |
+
# Initialize the ChatBot class with an empty history
|
63 |
+
self.history = []
|
64 |
+
|
65 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
66 |
+
# Combine the user's input with the system prompt
|
67 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
68 |
+
|
69 |
+
# Encode the formatted input using the tokenizer
|
70 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
71 |
+
|
72 |
+
# Generate a response using the PEFT model
|
73 |
+
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
74 |
+
|
75 |
+
# Decode the generated response to text
|
76 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
77 |
+
|
78 |
+
return response_text # Return the generated response
|
79 |
+
|
80 |
+
bot = ChatBot()
|
81 |
+
|
82 |
+
title = "🚀👋🏻Welcome to Tonic's🤖SuperAGI/SAM Chat🚀"
|
83 |
+
description = "SAM is an Agentic-Native LLM that excels at complex reasoning. You can use this Space to test out the current model [Tonic/superagi-sam](https://huggingface.co/Tonic/superagi-sam) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
84 |
+
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
85 |
+
|
86 |
+
|
87 |
+
def main():
|
88 |
+
with gr.Blocks() as demo:
|
89 |
+
gr.Markdown(title)
|
90 |
+
gr.Markdown(description)
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column():
|
93 |
+
example_instruction = gr.Textbox(label="Example Instruction")
|
94 |
+
example_answer = gr.Textbox(label="Example Answer")
|
95 |
+
with gr.Column():
|
96 |
+
user_input = gr.Textbox(label="Your Question")
|
97 |
+
system_prompt = gr.Textbox(label="System Prompt", value="You are an expert medical analyst:")
|
98 |
+
submit_btn = gr.Button("Submit")
|
99 |
+
output = gr.Textbox(label="Response")
|
100 |
+
|
101 |
+
submit_btn.click(
|
102 |
+
fn=bot.predict,
|
103 |
+
inputs=[example_instruction, example_answer, user_input, system_prompt],
|
104 |
+
outputs=output
|
105 |
+
)
|
106 |
+
|
107 |
+
demo.launch()
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|