Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,11 @@ You can also use efog 🌬️🌁🌫️SqlCoder by cloning this space. 🧬🔬
|
|
9 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
10 |
"""
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
self.metadata_file = metadata_file
|
18 |
-
|
19 |
-
def get_tokenizer_model(self, model_name):
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
model_name,
|
@@ -27,6 +24,12 @@ class SQLQueryGenerator:
|
|
27 |
)
|
28 |
return tokenizer, model
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def generate_prompt(self, question):
|
31 |
with open(self.prompt_file, "r") as f:
|
32 |
prompt = f.read()
|
@@ -39,14 +42,15 @@ class SQLQueryGenerator:
|
|
39 |
)
|
40 |
return prompt
|
41 |
|
|
|
42 |
def run_inference(self, question):
|
43 |
-
self.model.to('cuda')
|
44 |
prompt = self.generate_prompt(question)
|
45 |
-
eos_token_id = self.tokenizer.eos_token_id
|
46 |
pipe = pipeline(
|
47 |
"text-generation",
|
48 |
-
model=self.model,
|
49 |
-
tokenizer=self.tokenizer,
|
50 |
max_new_tokens=300,
|
51 |
do_sample=False,
|
52 |
num_beams=5,
|
@@ -66,19 +70,17 @@ class SQLQueryGenerator:
|
|
66 |
)
|
67 |
return generated_query
|
68 |
|
69 |
-
def generate_sql(question, sql_query_generator):
|
70 |
-
return sql_query_generator.run_inference(question)
|
71 |
-
|
72 |
def main():
|
73 |
model_name = "defog/sqlcoder2"
|
74 |
-
|
|
|
75 |
|
76 |
with gr.Blocks() as demo:
|
77 |
gr.Markdown(title)
|
78 |
question = gr.Textbox(label="Enter your question")
|
79 |
submit = gr.Button("Generate SQL Query")
|
80 |
output = gr.Textbox(label="🌬️🌁🌫️SqlCoder-2")
|
81 |
-
submit.click(fn=
|
82 |
|
83 |
demo.launch()
|
84 |
|
|
|
9 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
10 |
"""
|
11 |
|
12 |
+
class TokenizerModel:
|
13 |
+
def __init__(self, model_name):
|
14 |
+
self.tokenizer, self.model = self.load_model(model_name)
|
15 |
+
|
16 |
+
def load_model(self, model_name):
|
|
|
|
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
model_name,
|
|
|
24 |
)
|
25 |
return tokenizer, model
|
26 |
|
27 |
+
class SQLQueryGenerator:
|
28 |
+
def __init__(self, tokenizer_model, prompt_file="prompt.md", metadata_file="metadata.sql"):
|
29 |
+
self.tokenizer_model = tokenizer_model
|
30 |
+
self.prompt_file = prompt_file
|
31 |
+
self.metadata_file = metadata_file
|
32 |
+
|
33 |
def generate_prompt(self, question):
|
34 |
with open(self.prompt_file, "r") as f:
|
35 |
prompt = f.read()
|
|
|
42 |
)
|
43 |
return prompt
|
44 |
|
45 |
+
@spaces.GPU
|
46 |
def run_inference(self, question):
|
47 |
+
self.tokenizer_model.model.to('cuda')
|
48 |
prompt = self.generate_prompt(question)
|
49 |
+
eos_token_id = self.tokenizer_model.tokenizer.eos_token_id
|
50 |
pipe = pipeline(
|
51 |
"text-generation",
|
52 |
+
model=self.tokenizer_model.model,
|
53 |
+
tokenizer=self.tokenizer_model.tokenizer,
|
54 |
max_new_tokens=300,
|
55 |
do_sample=False,
|
56 |
num_beams=5,
|
|
|
70 |
)
|
71 |
return generated_query
|
72 |
|
|
|
|
|
|
|
73 |
def main():
|
74 |
model_name = "defog/sqlcoder2"
|
75 |
+
tokenizer_model = TokenizerModel(model_name)
|
76 |
+
sql_query_generator = SQLQueryGenerator(tokenizer_model)
|
77 |
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.Markdown(title)
|
80 |
question = gr.Textbox(label="Enter your question")
|
81 |
submit = gr.Button("Generate SQL Query")
|
82 |
output = gr.Textbox(label="🌬️🌁🌫️SqlCoder-2")
|
83 |
+
submit.click(fn=sql_query_generator.run_inference, inputs=question, outputs=output)
|
84 |
|
85 |
demo.launch()
|
86 |
|