|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import gradio as gr |
|
|
|
title = """# 🙋🏻♂️Welcome to 🌟Tonic's Defog 🌬️🌁🌫️SqlCoder-34B-Alpha |
|
You can use this Space to test out the current model [defog/sqlcoder-34b-alpha](https://huggingface.co/defog/sqlcoder-34b-alpha). [defog/sqlcoder-34b-alpha](https://huggingface.co/defog/sqlcoder-34b-alpha) is a 34B parameter model that outperforms gpt-4 and gpt-4-turbo for natural language to SQL generation tasks on our sql-eval framework, and significantly outperforms all popular open-source models. SQLCoder-34B is fine-tuned on a base CodeLlama model. |
|
You can also use 👨🏻⚕️❤️🩹🧑🏻⚕️Meditron by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/Meditron70B-AWQ?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> |
|
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 |
|
""" |
|
|
|
class SQLQueryGenerator: |
|
def __init__(self, model_name, prompt_file="prompt.md", metadata_file="metadata.sql"): |
|
self.tokenizer, self.model = self.get_tokenizer_model(model_name) |
|
self.prompt_file = prompt_file |
|
self.metadata_file = metadata_file |
|
|
|
def get_tokenizer_model(self, model_name): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
use_cache=True, |
|
) |
|
return tokenizer, model |
|
|
|
def generate_prompt(self, question): |
|
with open(self.prompt_file, "r") as f: |
|
prompt = f.read() |
|
|
|
with open(self.metadata_file, "r") as f: |
|
table_metadata_string = f.read() |
|
|
|
prompt = prompt.format( |
|
user_question=question, table_metadata_string=table_metadata_string |
|
) |
|
return prompt |
|
|
|
def run_inference(self, question): |
|
prompt = self.generate_prompt(question) |
|
eos_token_id = self.tokenizer.eos_token_id |
|
pipe = pipeline( |
|
"text-generation", |
|
model=self.model, |
|
tokenizer=self.tokenizer, |
|
max_new_tokens=300, |
|
do_sample=False, |
|
num_beams=5, |
|
) |
|
generated_query = ( |
|
pipe( |
|
prompt, |
|
num_return_sequences=1, |
|
eos_token_id=eos_token_id, |
|
pad_token_id=eos_token_id, |
|
)[0]["generated_text"] |
|
.split("```sql")[-1] |
|
.split("```")[0] |
|
.split(";")[0] |
|
.strip() |
|
+ ";" |
|
) |
|
return generated_query |
|
|
|
|
|
@spaces.GPU |
|
def generate_sql(question): |
|
return sql_query_generator.run_inference(question) |
|
|
|
def main(): |
|
model_name = "defog/sqlcoder-34b-alpha" |
|
sql_query_generator = SQLQueryGenerator(model_name) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
question = gr.Textbox(label="Enter your question") |
|
submit = gr.Button("Generate SQL Query") |
|
output = gr.Textbox(label="🌬️🌁🌫️SqlCoder-34B-alpha") |
|
submit.click(fn=generate_sql, inputs=question, outputs=output) |
|
|
|
demo.launch() |
|
|
|
if __name__ == "__main__": |
|
main() |