Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, LlamaForCausalLM
|
4 |
import os
|
|
|
|
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", use_auth_token=os.getenv("HUGGINGFACE_TOKEN"))
|
7 |
model = LlamaForCausalLM.from_pretrained("kaist-ai/Prometheus-13b-v1.0", device_map="auto", load_in_8bit=True)
|
@@ -14,14 +16,18 @@ An instruction (might include an Input inside it), a response to evaluate, a ref
|
|
14 |
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
|
15 |
3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\"
|
16 |
4. Please do not generate any other opening, closing, and explanations.
|
|
|
17 |
###The instruction to evaluate:
|
18 |
{instruction_to_evaluate}
|
|
|
19 |
###Response to evaluate:
|
20 |
{response_to_evaluate}
|
|
|
21 |
###Reference Answer (Score 5):
|
22 |
{reference_answer}
|
|
|
23 |
###Score Rubrics:
|
24 |
-
|
25 |
Score 1: {score1_description}
|
26 |
Score 2: {score2_description}
|
27 |
Score 3: {score3_description}
|
@@ -31,7 +37,7 @@ Score 5: {score5_description}
|
|
31 |
|
32 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
33 |
|
34 |
-
outputs = model.generate(input_ids)
|
35 |
result = tokenizer.decode(outputs[0])
|
36 |
|
37 |
return result
|
@@ -49,7 +55,7 @@ iface = gr.Interface(
|
|
49 |
gr.Textbox(label="Score 4 Description", placeholder="Enter Score 4 Description Here...", lines=2),
|
50 |
gr.Textbox(label="Score 5 Description", placeholder="Enter Score 5 Description Here...", lines=2)
|
51 |
],
|
52 |
-
outputs="
|
53 |
title="Welcome to🌟Tonic's⚖️Prometheus",
|
54 |
description="[🎏KAIST-AI/⚖️Prometheus](https://huggingface.co/kaist-ai/prometheus-13b-v1.0) Prometheus is an alternative of GPT-4 evaluation when doing fine-grained evaluation of an underlying LLM & a Reward model for Reinforcement Learning from Human Feedback (RLHF). You can use this demo to try out their model ! You can also use [🎏KAIST-AI/⚖️Prometheus](https://huggingface.co/kaist-ai/prometheus-13b-v1.0) [by cloning this space](https://huggingface.co/spaces/Tonic/prometheus/tree/main?clone=true). [🧬🔬🔍 Simply click here: 🤗](https://huggingface.co/spaces/Tonic/prometheus?duplicate=true) Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗",
|
55 |
examples=[
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, LlamaForCausalLM
|
4 |
import os
|
5 |
+
import fastchat
|
6 |
+
from fastchat.conversation import get_conv_template
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", use_auth_token=os.getenv("HUGGINGFACE_TOKEN"))
|
9 |
model = LlamaForCausalLM.from_pretrained("kaist-ai/Prometheus-13b-v1.0", device_map="auto", load_in_8bit=True)
|
|
|
16 |
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
|
17 |
3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\"
|
18 |
4. Please do not generate any other opening, closing, and explanations.
|
19 |
+
|
20 |
###The instruction to evaluate:
|
21 |
{instruction_to_evaluate}
|
22 |
+
|
23 |
###Response to evaluate:
|
24 |
{response_to_evaluate}
|
25 |
+
|
26 |
###Reference Answer (Score 5):
|
27 |
{reference_answer}
|
28 |
+
|
29 |
###Score Rubrics:
|
30 |
+
{criteria_description}
|
31 |
Score 1: {score1_description}
|
32 |
Score 2: {score2_description}
|
33 |
Score 3: {score3_description}
|
|
|
37 |
|
38 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
39 |
|
40 |
+
outputs = model.generate(input_ids, sample=True, temperature=1.0, top_p=0.9, max_new_tokens=650, repetition_penalty=1.03)
|
41 |
result = tokenizer.decode(outputs[0])
|
42 |
|
43 |
return result
|
|
|
55 |
gr.Textbox(label="Score 4 Description", placeholder="Enter Score 4 Description Here...", lines=2),
|
56 |
gr.Textbox(label="Score 5 Description", placeholder="Enter Score 5 Description Here...", lines=2)
|
57 |
],
|
58 |
+
outputs="🎏KAIST-AI/⚖️Prometheus",
|
59 |
title="Welcome to🌟Tonic's⚖️Prometheus",
|
60 |
description="[🎏KAIST-AI/⚖️Prometheus](https://huggingface.co/kaist-ai/prometheus-13b-v1.0) Prometheus is an alternative of GPT-4 evaluation when doing fine-grained evaluation of an underlying LLM & a Reward model for Reinforcement Learning from Human Feedback (RLHF). You can use this demo to try out their model ! You can also use [🎏KAIST-AI/⚖️Prometheus](https://huggingface.co/kaist-ai/prometheus-13b-v1.0) [by cloning this space](https://huggingface.co/spaces/Tonic/prometheus/tree/main?clone=true). [🧬🔬🔍 Simply click here: 🤗](https://huggingface.co/spaces/Tonic/prometheus?duplicate=true) Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗",
|
61 |
examples=[
|