Spaces:
Runtime error
Runtime error
SYSTEM_PROMPT = "As an LLM, my job is to help users create science fair experiments that are both fun and advanced. I will provide a protocol, presentation, and answer in markdown format. Keep in mind that the experiments should be grade-appropriate and relevant to the subject." | |
TITLE = "Science Fair Genius" | |
EXAMPLE_INPUT = "6th grade, Biology" | |
import gradio as gr | |
from gradio_client import Client | |
import os | |
import requests | |
tulu = "https://tonic1-tulu.hf.space/--replicas/5cpc5/" | |
def predict_beta(message, chatbot=[], system_prompt=""): | |
client = Client(tulu) | |
try: | |
max_new_tokens = 350 | |
temperature = 0.4 | |
top_p = 0.9 | |
repetition_penalty = 0.9 | |
advanced = False | |
# Making the prediction | |
result = client.predict( | |
message, | |
system_prompt, | |
max_new_tokens, | |
temperature, | |
top_p, | |
repetition_penalty, | |
advanced, | |
fn_index=0 | |
) | |
print("Raw API Response:", result) # Debugging print | |
if result is not None: | |
print("Processed bot_message:", result) # Debugging print | |
return result | |
else: | |
print("No response or empty response from the model.") # Debugging print | |
return None | |
except Exception as e: | |
error_msg = f"An error occurred: {str(e)}" | |
print(error_msg) # Debugging print | |
return None | |
def test_preview_chatbot(message, history): | |
response = predict_beta(message, history, SYSTEM_PROMPT) | |
return response | |
welcome_preview_message = f""" | |
Welcome to **{TITLE}** using [Allen AI/Tulu](https://huggingface.co/allenai/tulu-2-dpo-13b) ! Say something like: | |
''{EXAMPLE_INPUT}'' | |
""" | |
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)]) | |
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT) | |
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview) | |
demo.launch() |