update demo forNV1bed
Browse files- .github/workflows/publish.yml +0 -29
- .github/workflows/tests.yml +0 -34
- README.md +3 -3
- app.py +64 -179
- benchmark.py +0 -226
- data/.gitignore +0 -6
- data/examples/0.md +0 -5
- data/examples/0.png +0 -0
- data/examples/100.md +0 -1
- data/examples/100.png +0 -0
- data/examples/300.md +0 -4
- data/examples/300.png +0 -0
- data/examples/400.md +0 -9
- data/examples/400.png +0 -0
- data/images/gui_screen.png +0 -0
- data/images/texify_bench.png +0 -0
- ocr_app.py +0 -167
- ocr_image.py +0 -67
- poetry.lock +0 -0
- pyproject.toml +0 -47
- requirements.txt +3 -2
- run_ocr_app.py +0 -8
- scripts/verify_benchmark_scores.py +0 -20
.github/workflows/publish.yml
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
name: Python package
|
2 |
-
on:
|
3 |
-
push:
|
4 |
-
tags:
|
5 |
-
- "v*.*.*"
|
6 |
-
jobs:
|
7 |
-
build:
|
8 |
-
runs-on: ubuntu-latest
|
9 |
-
steps:
|
10 |
-
- uses: actions/checkout@v3
|
11 |
-
- name: Set up Python 3.11
|
12 |
-
uses: actions/setup-python@v4
|
13 |
-
with:
|
14 |
-
python-version: 3.11
|
15 |
-
- name: Install python dependencies
|
16 |
-
run: |
|
17 |
-
pip install poetry
|
18 |
-
poetry install
|
19 |
-
poetry remove torch
|
20 |
-
poetry run pip install torch --index-url https://download.pytorch.org/whl/cpu
|
21 |
-
- name: Build package
|
22 |
-
run: |
|
23 |
-
poetry build
|
24 |
-
- name: Publish package
|
25 |
-
env:
|
26 |
-
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
|
27 |
-
run: |
|
28 |
-
poetry config pypi-token.pypi "$PYPI_TOKEN"
|
29 |
-
poetry publish
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/workflows/tests.yml
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
name: Integration test
|
2 |
-
|
3 |
-
on: [push]
|
4 |
-
|
5 |
-
env:
|
6 |
-
TORCH_DEVICE: "cpu"
|
7 |
-
|
8 |
-
jobs:
|
9 |
-
build:
|
10 |
-
runs-on: ubuntu-latest
|
11 |
-
steps:
|
12 |
-
- uses: actions/checkout@v3
|
13 |
-
- name: Set up Python 3.11
|
14 |
-
uses: actions/setup-python@v4
|
15 |
-
with:
|
16 |
-
python-version: 3.11
|
17 |
-
- name: Install python dependencies
|
18 |
-
run: |
|
19 |
-
pip install poetry
|
20 |
-
poetry install
|
21 |
-
poetry remove torch
|
22 |
-
poetry run pip install torch --index-url https://download.pytorch.org/whl/cpu
|
23 |
-
- name: Download benchmark data
|
24 |
-
run: |
|
25 |
-
wget -O benchmark_data.zip "https://drive.google.com/uc?export=download&id=1dbY0kBq2SUa885gmbLPUWSRzy5K7O5XJ"
|
26 |
-
unzip benchmark_data.zip
|
27 |
-
mv bench_data.json data/bench_data.json
|
28 |
-
- name: Run benchmark test
|
29 |
-
run: |
|
30 |
-
poetry run texify_benchmark --max 16
|
31 |
-
poetry run python scripts/verify_benchmark_scores.py data/bench_results.json
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
title: Tonic's
|
4 |
sdk: gradio
|
5 |
-
emoji:
|
6 |
-
colorFrom:
|
7 |
colorTo: green
|
8 |
pinned: true
|
9 |
app_file: app.py
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
title: Tonic's NV-Embed
|
4 |
sdk: gradio
|
5 |
+
emoji: n📽️n🛌🏻
|
6 |
+
colorFrom: pink
|
7 |
colorTo: green
|
8 |
pinned: true
|
9 |
app_file: app.py
|
app.py
CHANGED
@@ -6,16 +6,18 @@ import threading
|
|
6 |
import queue
|
7 |
import gradio as gr
|
8 |
import os
|
|
|
|
|
|
|
9 |
|
10 |
title = """
|
11 |
-
# 👋🏻Welcome to 🙋🏻♂️Tonic's
|
|
|
12 |
description = """
|
13 |
-
You can use this
|
14 |
-
You can also use
|
15 |
-
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [
|
16 |
"""
|
17 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
18 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
tasks = {
|
21 |
'ArguAna': 'Given a claim, find documents that refute the claim',
|
@@ -31,17 +33,45 @@ tasks = {
|
|
31 |
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
32 |
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
|
33 |
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
|
34 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
}
|
36 |
|
|
|
|
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
39 |
embedding_request_queue = queue.Queue()
|
40 |
embedding_response_queue = queue.Queue()
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
45 |
|
46 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
47 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
@@ -52,18 +82,22 @@ def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tenso
|
|
52 |
batch_size = last_hidden_states.shape[0]
|
53 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
54 |
|
55 |
-
def
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def embedding_worker():
|
69 |
while True:
|
@@ -79,14 +113,13 @@ def embedding_worker():
|
|
79 |
embedding_request_queue.task_done()
|
80 |
clear_cuda_cache()
|
81 |
|
82 |
-
threading.Thread(target=embedding_worker, daemon=True).start()
|
83 |
-
|
84 |
def compute_embeddings(selected_task, input_text):
|
85 |
try:
|
86 |
task_description = tasks[selected_task]
|
87 |
except KeyError:
|
88 |
print(f"Selected task not found: {selected_task}")
|
89 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
|
|
90 |
max_length = 2048
|
91 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
92 |
|
@@ -101,124 +134,42 @@ def compute_embeddings(selected_task, input_text):
|
|
101 |
clear_cuda_cache()
|
102 |
return embeddings_list
|
103 |
|
104 |
-
def decode_embedding(embedding_str):
|
105 |
-
try:
|
106 |
-
embedding = [float(num) for num in embedding_str.split(',')]
|
107 |
-
embedding_tensor = torch.tensor(embedding, dtype=torch.float16, device=device)
|
108 |
-
decoded_embedding = tokenizer.decode(embedding_tensor[0], skip_special_tokens=True)
|
109 |
-
return decoded_embedding.cpu().numpy().tolist()
|
110 |
-
except Exception as e:
|
111 |
-
return f"Error in decoding: {str(e)}"
|
112 |
-
|
113 |
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
114 |
try:
|
115 |
task_description = tasks[selected_task]
|
116 |
except KeyError:
|
117 |
print(f"Selected task not found: {selected_task}")
|
118 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
|
|
119 |
# Compute embeddings for each sentence
|
120 |
embeddings1 = compute_embeddings(selected_task, sentence1)
|
121 |
embeddings2 = compute_embeddings(selected_task, sentence2)
|
122 |
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
|
123 |
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
|
124 |
|
125 |
-
# Convert embeddings to tensors
|
126 |
-
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
|
127 |
-
embeddings_tensor2 = torch.tensor(embeddings2).to(device).half()
|
128 |
-
embeddings_tensor3 = torch.tensor(embeddings3).to(device).half()
|
129 |
-
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
|
130 |
-
|
131 |
-
# Compute cosine similarity
|
132 |
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
|
133 |
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
|
134 |
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
|
135 |
|
136 |
-
# Free memory
|
137 |
-
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
|
138 |
-
|
139 |
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
|
140 |
clear_cuda_cache()
|
141 |
return similarity_scores
|
142 |
-
|
143 |
def compute_cosine_similarity(emb1, emb2):
|
144 |
tensor1 = torch.tensor(emb1).to(device).half()
|
145 |
tensor2 = torch.tensor(emb2).to(device).half()
|
146 |
similarity = F.cosine_similarity(tensor1, tensor2).item()
|
147 |
-
free_memory(tensor1, tensor2)
|
148 |
clear_cuda_cache()
|
149 |
return similarity
|
150 |
|
151 |
-
|
152 |
-
def compute_embeddings_batch(input_texts):
|
153 |
-
max_length = 2042
|
154 |
-
processed_texts = [f'Instruct: {task_description}\nQuery: {text}' for text in input_texts]
|
155 |
-
|
156 |
-
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
157 |
-
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
158 |
-
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
159 |
-
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
160 |
-
outputs = model(**batch_dict)
|
161 |
-
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
162 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
163 |
-
clear_cuda_cache()
|
164 |
-
return embeddings.detach().cpu().numpy()
|
165 |
-
|
166 |
-
def semantic_search(query_embedding, corpus_embeddings, top_k=5):
|
167 |
-
scores = np.dot(corpus_embeddings, query_embedding.T).flatten()
|
168 |
-
top_k_indices = np.argsort(scores)[::-1][:top_k]
|
169 |
-
return top_k_indices, scores[top_k_indices]
|
170 |
-
|
171 |
-
def search_similar_sentences(input_question, corpus_sentences, corpus_embeddings):
|
172 |
-
question_embedding = compute_embeddings_batch([input_question])[0]
|
173 |
-
top_k_indices, top_k_scores = semantic_search(question_embedding, corpus_embeddings)
|
174 |
-
results = [(corpus_sentences[i], top_k_scores[i]) for i in top_k_indices]
|
175 |
-
return results
|
176 |
-
|
177 |
-
# openai response object formatting
|
178 |
-
def format_response(embeddings):
|
179 |
-
return {
|
180 |
-
"data": [
|
181 |
-
{
|
182 |
-
"embedding": embeddings,
|
183 |
-
"index": 0,
|
184 |
-
"object": "embedding"
|
185 |
-
}
|
186 |
-
],
|
187 |
-
"model": "e5-mistral",
|
188 |
-
"object": "list",
|
189 |
-
"usage": {
|
190 |
-
"prompt_tokens": 17,
|
191 |
-
"total_tokens": 17
|
192 |
-
}
|
193 |
-
}
|
194 |
-
|
195 |
-
def generate_and_format_embeddings(selected_task, input_text):
|
196 |
-
embedding_request_queue.put((selected_task, input_text))
|
197 |
-
response = embedding_response_queue.get()
|
198 |
-
embedding_response_queue.task_done()
|
199 |
-
clear_cuda_cache()
|
200 |
-
return response
|
201 |
-
|
202 |
-
|
203 |
def app_interface():
|
204 |
-
corpus_sentences = []
|
205 |
-
corpus_embeddings = []
|
206 |
with gr.Blocks() as demo:
|
207 |
gr.Markdown(title)
|
208 |
gr.Markdown(description)
|
|
|
209 |
with gr.Row():
|
210 |
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
|
211 |
|
212 |
-
with gr.Tab("Embedding Generation"):
|
213 |
-
input_text_box = gr.Textbox(label="📖Input Text")
|
214 |
-
compute_button = gr.Button("Try🐣🛌🏻e5")
|
215 |
-
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
|
216 |
-
compute_button.click(
|
217 |
-
fn=compute_embeddings,
|
218 |
-
inputs=[task_dropdown, input_text_box],
|
219 |
-
outputs=output_display
|
220 |
-
)
|
221 |
-
|
222 |
with gr.Tab("Sentence Similarity"):
|
223 |
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
|
224 |
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
|
@@ -226,83 +177,17 @@ def app_interface():
|
|
226 |
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
|
227 |
similarity_button = gr.Button("Compute Similarity")
|
228 |
similarity_output = gr.Textbox(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
|
|
229 |
similarity_button.click(
|
230 |
fn=compute_similarity,
|
231 |
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
|
232 |
outputs=similarity_output
|
233 |
)
|
234 |
-
with gr.Tab("Load Corpus"):
|
235 |
-
json_uploader = gr.File(label="Upload JSON File")
|
236 |
-
load_corpus_button = gr.Button("Load Corpus")
|
237 |
-
corpus_status = gr.Textbox(label="Corpus Status", value="Corpus not loaded")
|
238 |
-
|
239 |
-
def load_corpus(file_info):
|
240 |
-
if file_info is None:
|
241 |
-
return "No file uploaded. Please upload a JSON file."
|
242 |
-
try:
|
243 |
-
global corpus_sentences, corpus_embeddings
|
244 |
-
corpus_sentences = load_corpus_from_json(file_info['name'])
|
245 |
-
corpus_embeddings = compute_embeddings_batch(corpus_sentences)
|
246 |
-
return "Corpus loaded successfully with {} sentences.".format(len(corpus_sentences))
|
247 |
-
except Exception as e:
|
248 |
-
return "Error loading corpus: {}".format(e)
|
249 |
-
|
250 |
-
load_corpus_button.click(
|
251 |
-
fn=load_corpus,
|
252 |
-
inputs=json_uploader,
|
253 |
-
outputs=corpus_status
|
254 |
-
)
|
255 |
-
|
256 |
-
with gr.Tab("Semantic Search"):
|
257 |
-
input_question_box = gr.Textbox(label="Enter your question")
|
258 |
-
search_button = gr.Button("Search")
|
259 |
-
search_results_output = gr.Textbox(label="Search Results")
|
260 |
-
|
261 |
-
def perform_search(input_question):
|
262 |
-
if not corpus_sentences or not corpus_embeddings:
|
263 |
-
return "Corpus is not loaded. Please load a corpus first."
|
264 |
-
return search_similar_sentences(input_question, corpus_sentences, corpus_embeddings)
|
265 |
-
|
266 |
-
search_button.click(
|
267 |
-
fn=perform_search,
|
268 |
-
inputs=input_question_box,
|
269 |
-
outputs=search_results_output
|
270 |
-
)
|
271 |
-
|
272 |
-
with gr.Tab("Connector-like Embeddings"):
|
273 |
-
with gr.Row():
|
274 |
-
input_text_box_connector = gr.Textbox(label="Input Text", placeholder="Enter text or array of texts")
|
275 |
-
model_dropdown_connector = gr.Dropdown(label="Model", choices=["ArguAna", "ClimateFEVER", "DBPedia", "FEVER", "FiQA2018", "HotpotQA", "MSMARCO", "NFCorpus", "NQ", "QuoraRetrieval", "SCIDOCS", "SciFact", "Touche2020", "TRECCOVID"], value="text-embedding-ada-002")
|
276 |
-
encoding_format_connector = gr.Radio(label="Encoding Format", choices=["float", "base64"], value="float")
|
277 |
-
user_connector = gr.Textbox(label="User", placeholder="Enter user identifier (optional)")
|
278 |
-
submit_button_connector = gr.Button("Generate Embeddings")
|
279 |
-
output_display_connector = gr.JSON(label="Embeddings Output")
|
280 |
-
submit_button_connector.click(
|
281 |
-
fn=generate_and_format_embeddings,
|
282 |
-
inputs=[model_dropdown_connector, input_text_box_connector],
|
283 |
-
outputs=output_display_connector
|
284 |
-
)
|
285 |
-
|
286 |
-
# with gr.Tab("Decode Embedding"):
|
287 |
-
# embedding_input = gr.Textbox(label="Enter Embedding (comma-separated floats)")
|
288 |
-
# decode_button = gr.Button("Decode")
|
289 |
-
# decoded_output = gr.Textbox(label="Decoded Embedding")
|
290 |
-
#
|
291 |
-
# decode_button.click(
|
292 |
-
# fn=decode_embedding,
|
293 |
-
# inputs=embedding_input,
|
294 |
-
# outputs=decoded_output
|
295 |
-
# )
|
296 |
-
|
297 |
-
with gr.Row():
|
298 |
-
with gr.Column():
|
299 |
-
input_text_box
|
300 |
-
with gr.Column():
|
301 |
-
compute_button
|
302 |
-
output_display
|
303 |
|
304 |
return demo
|
305 |
|
|
|
|
|
306 |
|
307 |
app_interface().queue()
|
308 |
app_interface().launch(share=True)
|
|
|
6 |
import queue
|
7 |
import gradio as gr
|
8 |
import os
|
9 |
+
import json
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
|
13 |
title = """
|
14 |
+
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
|
15 |
+
|
16 |
description = """
|
17 |
+
You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks.
|
18 |
+
You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
19 |
+
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
20 |
"""
|
|
|
|
|
21 |
|
22 |
tasks = {
|
23 |
'ArguAna': 'Given a claim, find documents that refute the claim',
|
|
|
33 |
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
34 |
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
|
35 |
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
|
36 |
+
'Natural Language Inference' : 'Retrieve semantically similar text',
|
37 |
+
'Natural Language Inference' : 'Given a premise, retrieve a hypothesis that is entailed by the premise 20k',
|
38 |
+
'PAQ, MSMARCO' : 'Given a web search query, retrieve relevant passages that answer the query',
|
39 |
+
'PAQ, MSMARCO' : 'Given a question, retrieve passages that answer the question',
|
40 |
+
'SQUAD' : 'Given a question, retrieve Wikipedia passages that answer the question' ,
|
41 |
+
'StackExchange' : 'Given a question paragraph at StackExchange, retrieve a question duplicated paragraph',
|
42 |
+
'Natural Question' : 'Given a question, retrieve Wikipedia passages that answer the question',
|
43 |
+
'BioASQ' : 'Given a question, retrieve detailed question descriptions that are duplicates to the given question',
|
44 |
+
'STS12, STS22, STSBenchmark' : 'Retrieve semantically similar text.',
|
45 |
+
'AmazonCounterfactualClassification' : 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual' ,
|
46 |
+
'AmazonReviewsClassification' : 'Classify the given Amazon review into its appropriate rating category' ,
|
47 |
+
'Banking77Classification' : 'Given a online banking query, find the corresponding intents',
|
48 |
+
'EmotionClassification' : 'Classify the emotion expressed in the given Twitter message into one of the six emotions:anger, fear, joy, love, sadness, and surprise',
|
49 |
+
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
|
50 |
+
'MTOPIntentClassification' : 'Classify the intent of the given utterance in task-oriented conversation',
|
51 |
+
'ToxicConversationsClassification' : 'Classify the given comments as either toxic or not toxic',
|
52 |
+
'TweetSentimentExtractionClassification' : 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
|
53 |
+
'ArxivClusteringP2P' : 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
|
54 |
+
'ArxivClusteringS2S' : 'Identify the main and secondary category of Arxiv papers based on the titles',
|
55 |
+
'BiorxivClusteringP2P' : 'Identify the main category of Biorxiv papers based on the titles and abstracts' ,
|
56 |
+
'BiorxivClusteringS2S' : 'Identify the main category of Biorxiv papers based on the titles',
|
57 |
+
'MedrxivClusteringP2P' : 'Identify the main category of Medrxiv papers based on the titles and abstracts',
|
58 |
+
'MedrxivClusteringS2S' : 'Identify the main category of Medrxiv papers based on the titles',
|
59 |
+
'TwentyNewsgroupsClustering' : 'Identify the topic or theme of the given news articles'
|
60 |
}
|
61 |
|
62 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
|
65 |
+
# Define the model and tokenizer globally
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True)
|
67 |
+
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device)
|
68 |
+
|
69 |
+
# Embedding requests and response queues
|
70 |
embedding_request_queue = queue.Queue()
|
71 |
embedding_response_queue = queue.Queue()
|
72 |
|
73 |
+
def clear_cuda_cache():
|
74 |
+
torch.cuda.empty_cache()
|
|
|
75 |
|
76 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
77 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
|
|
82 |
batch_size = last_hidden_states.shape[0]
|
83 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
84 |
|
85 |
+
def format_response(embeddings):
|
86 |
+
return {
|
87 |
+
"data": [
|
88 |
+
{
|
89 |
+
"embedding": embeddings,
|
90 |
+
"index": 0,
|
91 |
+
"object": "embedding"
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"model": "e5-mistral",
|
95 |
+
"object": "list",
|
96 |
+
"usage": {
|
97 |
+
"prompt_tokens": 17,
|
98 |
+
"total_tokens": 17
|
99 |
+
}
|
100 |
+
}
|
101 |
|
102 |
def embedding_worker():
|
103 |
while True:
|
|
|
113 |
embedding_request_queue.task_done()
|
114 |
clear_cuda_cache()
|
115 |
|
|
|
|
|
116 |
def compute_embeddings(selected_task, input_text):
|
117 |
try:
|
118 |
task_description = tasks[selected_task]
|
119 |
except KeyError:
|
120 |
print(f"Selected task not found: {selected_task}")
|
121 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
122 |
+
|
123 |
max_length = 2048
|
124 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
125 |
|
|
|
134 |
clear_cuda_cache()
|
135 |
return embeddings_list
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
138 |
try:
|
139 |
task_description = tasks[selected_task]
|
140 |
except KeyError:
|
141 |
print(f"Selected task not found: {selected_task}")
|
142 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
143 |
+
|
144 |
# Compute embeddings for each sentence
|
145 |
embeddings1 = compute_embeddings(selected_task, sentence1)
|
146 |
embeddings2 = compute_embeddings(selected_task, sentence2)
|
147 |
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
|
148 |
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
|
151 |
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
|
152 |
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
|
153 |
|
|
|
|
|
|
|
154 |
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
|
155 |
clear_cuda_cache()
|
156 |
return similarity_scores
|
157 |
+
|
158 |
def compute_cosine_similarity(emb1, emb2):
|
159 |
tensor1 = torch.tensor(emb1).to(device).half()
|
160 |
tensor2 = torch.tensor(emb2).to(device).half()
|
161 |
similarity = F.cosine_similarity(tensor1, tensor2).item()
|
|
|
162 |
clear_cuda_cache()
|
163 |
return similarity
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
def app_interface():
|
|
|
|
|
166 |
with gr.Blocks() as demo:
|
167 |
gr.Markdown(title)
|
168 |
gr.Markdown(description)
|
169 |
+
|
170 |
with gr.Row():
|
171 |
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
with gr.Tab("Sentence Similarity"):
|
174 |
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
|
175 |
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
|
|
|
177 |
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
|
178 |
similarity_button = gr.Button("Compute Similarity")
|
179 |
similarity_output = gr.Textbox(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
180 |
+
|
181 |
similarity_button.click(
|
182 |
fn=compute_similarity,
|
183 |
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
|
184 |
outputs=similarity_output
|
185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
return demo
|
188 |
|
189 |
+
embedding_worker_thread = threading.Thread(target=embedding_worker, daemon=True)
|
190 |
+
embedding_worker_thread.start()
|
191 |
|
192 |
app_interface().queue()
|
193 |
app_interface().launch(share=True)
|
benchmark.py
DELETED
@@ -1,226 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os.path
|
3 |
-
import random
|
4 |
-
import time
|
5 |
-
from functools import partial
|
6 |
-
|
7 |
-
import evaluate
|
8 |
-
from tabulate import tabulate
|
9 |
-
from tqdm import tqdm
|
10 |
-
|
11 |
-
from texify.inference import batch_inference
|
12 |
-
from texify.model.model import load_model
|
13 |
-
from texify.model.processor import load_processor
|
14 |
-
from PIL import Image
|
15 |
-
from texify.settings import settings
|
16 |
-
import json
|
17 |
-
import base64
|
18 |
-
import io
|
19 |
-
from rapidfuzz.distance import Levenshtein
|
20 |
-
|
21 |
-
|
22 |
-
def normalize_text(text):
|
23 |
-
# Replace fences
|
24 |
-
text = text.replace("$", "")
|
25 |
-
text = text.replace("\[", "")
|
26 |
-
text = text.replace("\]", "")
|
27 |
-
text = text.replace("\(", "")
|
28 |
-
text = text.replace("\)", "")
|
29 |
-
text = text.strip()
|
30 |
-
return text
|
31 |
-
|
32 |
-
|
33 |
-
def score_text(predictions, references):
|
34 |
-
bleu = evaluate.load("bleu")
|
35 |
-
bleu_results = bleu.compute(predictions=predictions, references=references)
|
36 |
-
|
37 |
-
meteor = evaluate.load('meteor')
|
38 |
-
meteor_results = meteor.compute(predictions=predictions, references=references)
|
39 |
-
|
40 |
-
lev_dist = []
|
41 |
-
for p, r in zip(predictions, references):
|
42 |
-
lev_dist.append(Levenshtein.normalized_distance(p, r))
|
43 |
-
|
44 |
-
return {
|
45 |
-
'bleu': bleu_results["bleu"],
|
46 |
-
'meteor': meteor_results['meteor'],
|
47 |
-
'edit': sum(lev_dist) / len(lev_dist)
|
48 |
-
}
|
49 |
-
|
50 |
-
|
51 |
-
def image_to_pil(image):
|
52 |
-
decoded = base64.b64decode(image)
|
53 |
-
return Image.open(io.BytesIO(decoded))
|
54 |
-
|
55 |
-
|
56 |
-
def load_images(source_data):
|
57 |
-
images = [sd["image"] for sd in source_data]
|
58 |
-
images = [image_to_pil(image) for image in images]
|
59 |
-
return images
|
60 |
-
|
61 |
-
|
62 |
-
def inference_texify(source_data, model, processor):
|
63 |
-
images = load_images(source_data)
|
64 |
-
|
65 |
-
write_data = []
|
66 |
-
for i in tqdm(range(0, len(images), settings.BATCH_SIZE), desc="Texify inference"):
|
67 |
-
batch = images[i:i+settings.BATCH_SIZE]
|
68 |
-
text = batch_inference(batch, model, processor)
|
69 |
-
for j, t in enumerate(text):
|
70 |
-
eq_idx = i + j
|
71 |
-
write_data.append({"text": t, "equation": source_data[eq_idx]["equation"]})
|
72 |
-
|
73 |
-
return write_data
|
74 |
-
|
75 |
-
|
76 |
-
def inference_pix2tex(source_data):
|
77 |
-
from pix2tex.cli import LatexOCR
|
78 |
-
model = LatexOCR()
|
79 |
-
|
80 |
-
images = load_images(source_data)
|
81 |
-
write_data = []
|
82 |
-
for i in tqdm(range(len(images)), desc="Pix2tex inference"):
|
83 |
-
try:
|
84 |
-
text = model(images[i])
|
85 |
-
except ValueError:
|
86 |
-
# Happens when resize fails
|
87 |
-
text = ""
|
88 |
-
write_data.append({"text": text, "equation": source_data[i]["equation"]})
|
89 |
-
|
90 |
-
return write_data
|
91 |
-
|
92 |
-
|
93 |
-
def image_to_bmp(image):
|
94 |
-
img_out = io.BytesIO()
|
95 |
-
image.save(img_out, format="BMP")
|
96 |
-
return img_out
|
97 |
-
|
98 |
-
|
99 |
-
def inference_nougat(source_data, batch_size=1):
|
100 |
-
import torch
|
101 |
-
from nougat.postprocessing import markdown_compatible
|
102 |
-
from nougat.utils.checkpoint import get_checkpoint
|
103 |
-
from nougat.utils.dataset import ImageDataset
|
104 |
-
from nougat.utils.device import move_to_device
|
105 |
-
from nougat import NougatModel
|
106 |
-
|
107 |
-
# Load images, then convert to bmp format for nougat
|
108 |
-
images = load_images(source_data)
|
109 |
-
images = [image_to_bmp(image) for image in images]
|
110 |
-
predictions = []
|
111 |
-
|
112 |
-
ckpt = get_checkpoint(None, model_tag="0.1.0-small")
|
113 |
-
model = NougatModel.from_pretrained(ckpt)
|
114 |
-
if settings.TORCH_DEVICE_MODEL != "cpu":
|
115 |
-
move_to_device(model, bf16=settings.CUDA, cuda=settings.CUDA)
|
116 |
-
model.eval()
|
117 |
-
|
118 |
-
dataset = ImageDataset(
|
119 |
-
images,
|
120 |
-
partial(model.encoder.prepare_input, random_padding=False),
|
121 |
-
)
|
122 |
-
|
123 |
-
# Batch sizes higher than 1 explode memory usage on CPU/MPS
|
124 |
-
dataloader = torch.utils.data.DataLoader(
|
125 |
-
dataset,
|
126 |
-
batch_size=batch_size,
|
127 |
-
pin_memory=True,
|
128 |
-
shuffle=False,
|
129 |
-
)
|
130 |
-
|
131 |
-
for idx, sample in tqdm(enumerate(dataloader), desc="Nougat inference", total=len(dataloader)):
|
132 |
-
model.config.max_length = settings.MAX_TOKENS
|
133 |
-
model_output = model.inference(image_tensors=sample, early_stopping=False)
|
134 |
-
output = [markdown_compatible(o) for o in model_output["predictions"]]
|
135 |
-
predictions.extend(output)
|
136 |
-
return predictions
|
137 |
-
|
138 |
-
|
139 |
-
def main():
|
140 |
-
parser = argparse.ArgumentParser(description="Benchmark the performance of texify.")
|
141 |
-
parser.add_argument("--data_path", type=str, help="Path to JSON file with source images/equations", default=os.path.join(settings.DATA_DIR, "bench_data.json"))
|
142 |
-
parser.add_argument("--result_path", type=str, help="Path to JSON file to save results to.", default=os.path.join(settings.DATA_DIR, "bench_results.json"))
|
143 |
-
parser.add_argument("--max", type=int, help="Maximum number of images to benchmark.", default=None)
|
144 |
-
parser.add_argument("--pix2tex", action="store_true", help="Run pix2tex scoring", default=False)
|
145 |
-
parser.add_argument("--nougat", action="store_true", help="Run nougat scoring", default=False)
|
146 |
-
args = parser.parse_args()
|
147 |
-
|
148 |
-
source_path = os.path.abspath(args.data_path)
|
149 |
-
result_path = os.path.abspath(args.result_path)
|
150 |
-
os.makedirs(os.path.dirname(result_path), exist_ok=True)
|
151 |
-
model = load_model()
|
152 |
-
processor = load_processor()
|
153 |
-
|
154 |
-
with open(source_path, "r") as f:
|
155 |
-
source_data = json.load(f)
|
156 |
-
|
157 |
-
if args.max:
|
158 |
-
random.seed(1)
|
159 |
-
source_data = random.sample(source_data, args.max)
|
160 |
-
|
161 |
-
start = time.time()
|
162 |
-
predictions = inference_texify(source_data, model, processor)
|
163 |
-
times = {"texify": time.time() - start}
|
164 |
-
text = [normalize_text(p["text"]) for p in predictions]
|
165 |
-
references = [normalize_text(p["equation"]) for p in predictions]
|
166 |
-
|
167 |
-
scores = score_text(text, references)
|
168 |
-
|
169 |
-
write_data = {
|
170 |
-
"texify": {
|
171 |
-
"scores": scores,
|
172 |
-
"text": [{"prediction": p, "reference": r} for p, r in zip(text, references)]
|
173 |
-
}
|
174 |
-
}
|
175 |
-
|
176 |
-
if args.pix2tex:
|
177 |
-
start = time.time()
|
178 |
-
predictions = inference_pix2tex(source_data)
|
179 |
-
times["pix2tex"] = time.time() - start
|
180 |
-
|
181 |
-
p_text = [normalize_text(p["text"]) for p in predictions]
|
182 |
-
|
183 |
-
p_scores = score_text(p_text, references)
|
184 |
-
|
185 |
-
write_data["pix2tex"] = {
|
186 |
-
"scores": p_scores,
|
187 |
-
"text": [{"prediction": p, "reference": r} for p, r in zip(p_text, references)]
|
188 |
-
}
|
189 |
-
|
190 |
-
if args.nougat:
|
191 |
-
start = time.time()
|
192 |
-
predictions = inference_nougat(source_data)
|
193 |
-
times["nougat"] = time.time() - start
|
194 |
-
n_text = [normalize_text(p) for p in predictions]
|
195 |
-
|
196 |
-
n_scores = score_text(n_text, references)
|
197 |
-
|
198 |
-
write_data["nougat"] = {
|
199 |
-
"scores": n_scores,
|
200 |
-
"text": [{"prediction": p, "reference": r} for p, r in zip(n_text, references)]
|
201 |
-
}
|
202 |
-
|
203 |
-
score_table = []
|
204 |
-
score_headers = ["bleu", "meteor", "edit"]
|
205 |
-
score_dirs = ["⬆", "⬆", "⬇", "⬇"]
|
206 |
-
|
207 |
-
for method in write_data.keys():
|
208 |
-
score_table.append([method, *[write_data[method]["scores"][h] for h in score_headers], times[method]])
|
209 |
-
|
210 |
-
score_headers.append("time taken (s)")
|
211 |
-
score_headers = [f"{h} {d}" for h, d in zip(score_headers, score_dirs)]
|
212 |
-
print()
|
213 |
-
print(tabulate(score_table, headers=["Method", *score_headers]))
|
214 |
-
print()
|
215 |
-
print("Higher is better for BLEU and METEOR, lower is better for edit distance and time taken.")
|
216 |
-
print("Note that pix2tex is unbatched (I couldn't find a batch inference method in the docs), so time taken is higher than it should be.")
|
217 |
-
|
218 |
-
with open(result_path, "w") as f:
|
219 |
-
json.dump(write_data, f, indent=4)
|
220 |
-
|
221 |
-
|
222 |
-
if __name__ == "__main__":
|
223 |
-
main()
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/.gitignore
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
*
|
2 |
-
!.gitignore
|
3 |
-
!examples
|
4 |
-
!examples/*
|
5 |
-
!images
|
6 |
-
!images/*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/examples/0.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
The potential $V_{i}$ of cell $\mathcal{C}_ {j}$ centred at position $\mathbf{r}_ {i}$ is related to the surface charge densities $\sigma_ {j}$ of cells $\mathcal{E}_ {j}$ $j\in[1,N]$ through the superposition principle as:
|
2 |
-
|
3 |
-
$$V_ {i}\,=\,\sum_ {j=0}^{N}\,\frac{\sigma_ {j}}{4\pi\varepsilon_ {0}}\,\int_{\mathcal{E}_ {j}}\frac{1}{\left|\mathbf{r}_ {i}-\mathbf{r}^{\prime}\right|}\,\mathrm{d}^{2}\mathbf{r}^{\prime}\,=\,\sum_{j=0}^{N}\,Q_ {ij}\,\sigma_{j},$$
|
4 |
-
|
5 |
-
where the integral over the surface of cell $\mathcal{C}_ {j}$ only depends on $\mathcal{C}{j}$ shape and on the relative position of the target point $\mathbf{r}_ {i}$ with respect to $\mathcal{C}_ {j}$ location, as $\sigma_ {j}$ is assumed constant over the whole surface of cell $\mathcal{C}_ {j}$.
|
|
|
|
|
|
|
|
|
|
|
|
data/examples/0.png
DELETED
Binary file (24.1 kB)
|
|
data/examples/100.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Following , the minimal energy fraction the muon receives in the pion's rest frame is $r_ {\pi}=(m_ {\mu}/m_ {\pi})^2\approx0.57$, when it is emitted against the direction of movement, or 1 when it coincides with the pion's direction.
|
|
|
|
data/examples/100.png
DELETED
Binary file (11.2 kB)
|
|
data/examples/300.md
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
|
2 |
-
$$\mid\frac{1}{x}=\frac{1}{c}\mid=\mid\frac{c-x}{xc}\mid=\frac{1}{\left\vert x\right\vert}\cdot\frac{1}{\left\vert c\right\vert}\cdot\left\vert x-c\right\vert$$
|
3 |
-
|
4 |
-
The factor $$\frac{1}{\left\vert x\right\vert}$$ is not good if its near 0.
|
|
|
|
|
|
|
|
|
|
data/examples/300.png
DELETED
Binary file (5.48 kB)
|
|
data/examples/400.md
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
Then the results are that afterward:
|
2 |
-
|
3 |
-
For every value of $\lambda$, there is a probability of $|\langle\Psi|\Psi_\lambda\rangle|^2$ that the system is in state $|\Psi_\lambda\rangle$
|
4 |
-
|
5 |
-
This is captured by the density matrix formalism as the transition
|
6 |
-
|
7 |
-
$|\Psi\rangle\langle\Psi|\Rightarrow\sum_\lambda|\langle\Psi|\Psi_\lambda\rangle|^2|\Psi_\lambda\rangle\langle\Psi_\lambda|$
|
8 |
-
|
9 |
-
atyy I guess thinking about it classically, Demystifier's argument must be right.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/examples/400.png
DELETED
Binary file (20.2 kB)
|
|
data/images/gui_screen.png
DELETED
Binary file (655 kB)
|
|
data/images/texify_bench.png
DELETED
Binary file (27.5 kB)
|
|
ocr_app.py
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
import io
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
from streamlit_drawable_canvas import st_canvas
|
6 |
-
import hashlib
|
7 |
-
import pypdfium2
|
8 |
-
|
9 |
-
from texify.inference import batch_inference
|
10 |
-
from texify.model.model import load_model
|
11 |
-
from texify.model.processor import load_processor
|
12 |
-
from texify.settings import settings
|
13 |
-
import subprocess
|
14 |
-
import re
|
15 |
-
from PIL import Image
|
16 |
-
|
17 |
-
MAX_WIDTH = 1000
|
18 |
-
|
19 |
-
|
20 |
-
def replace_katex_invalid(string):
|
21 |
-
# KaTeX cannot render all LaTeX, so we need to replace some things
|
22 |
-
string = re.sub(r'\\tag\{.*?\}', '', string)
|
23 |
-
string = re.sub(r'\\Big\{(.*?)\}|\\big\{(.*?)\}', r'\1\2', string)
|
24 |
-
return string
|
25 |
-
|
26 |
-
@st.cache_resource()
|
27 |
-
def load_model_cached():
|
28 |
-
return load_model()
|
29 |
-
|
30 |
-
|
31 |
-
@st.cache_resource()
|
32 |
-
def load_processor_cached():
|
33 |
-
return load_processor()
|
34 |
-
|
35 |
-
|
36 |
-
@st.cache_data()
|
37 |
-
def infer_image(pil_image, bbox, temperature):
|
38 |
-
input_img = pil_image.crop(bbox)
|
39 |
-
model_output = batch_inference([input_img], model, processor, temperature=temperature)
|
40 |
-
return model_output[0]
|
41 |
-
|
42 |
-
|
43 |
-
def open_pdf(pdf_file):
|
44 |
-
stream = io.BytesIO(pdf_file.getvalue())
|
45 |
-
return pypdfium2.PdfDocument(stream)
|
46 |
-
|
47 |
-
|
48 |
-
@st.cache_data()
|
49 |
-
def get_page_image(pdf_file, page_num, dpi=96):
|
50 |
-
doc = open_pdf(pdf_file)
|
51 |
-
renderer = doc.render(
|
52 |
-
pypdfium2.PdfBitmap.to_pil,
|
53 |
-
page_indices=[page_num - 1],
|
54 |
-
scale=dpi / 72,
|
55 |
-
)
|
56 |
-
png = list(renderer)[0]
|
57 |
-
png_image = png.convert("RGB")
|
58 |
-
return png_image
|
59 |
-
|
60 |
-
|
61 |
-
@st.cache_data()
|
62 |
-
def get_uploaded_image(in_file):
|
63 |
-
return Image.open(in_file).convert("RGB")
|
64 |
-
|
65 |
-
|
66 |
-
@st.cache_data()
|
67 |
-
def page_count(pdf_file):
|
68 |
-
doc = open_pdf(pdf_file)
|
69 |
-
return len(doc)
|
70 |
-
|
71 |
-
|
72 |
-
def get_canvas_hash(pil_image):
|
73 |
-
return hashlib.md5(pil_image.tobytes()).hexdigest()
|
74 |
-
|
75 |
-
|
76 |
-
@st.cache_data()
|
77 |
-
def get_image_size(pil_image):
|
78 |
-
if pil_image is None:
|
79 |
-
return 800, 600
|
80 |
-
height, width = pil_image.height, pil_image.width
|
81 |
-
if width > MAX_WIDTH:
|
82 |
-
scale = MAX_WIDTH / width
|
83 |
-
height = int(height * scale)
|
84 |
-
width = MAX_WIDTH
|
85 |
-
return height, width
|
86 |
-
|
87 |
-
|
88 |
-
st.set_page_config(layout="wide")
|
89 |
-
|
90 |
-
top_message = """### Texify
|
91 |
-
|
92 |
-
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right.
|
93 |
-
|
94 |
-
If you have already cropped your image, select "OCR image" in the sidebar instead.
|
95 |
-
"""
|
96 |
-
|
97 |
-
st.markdown(top_message)
|
98 |
-
col1, col2 = st.columns([.7, .3])
|
99 |
-
|
100 |
-
model = load_model_cached()
|
101 |
-
processor = load_processor_cached()
|
102 |
-
|
103 |
-
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
|
104 |
-
if in_file is None:
|
105 |
-
st.stop()
|
106 |
-
|
107 |
-
filetype = in_file.type
|
108 |
-
whole_image = False
|
109 |
-
if "pdf" in filetype:
|
110 |
-
page_count = page_count(in_file)
|
111 |
-
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
|
112 |
-
|
113 |
-
pil_image = get_page_image(in_file, page_number)
|
114 |
-
else:
|
115 |
-
pil_image = get_uploaded_image(in_file)
|
116 |
-
whole_image = st.sidebar.button("OCR image")
|
117 |
-
|
118 |
-
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
|
119 |
-
|
120 |
-
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
|
121 |
-
|
122 |
-
with col1:
|
123 |
-
# Create a canvas component
|
124 |
-
canvas_result = st_canvas(
|
125 |
-
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity
|
126 |
-
stroke_width=1,
|
127 |
-
stroke_color="#FFAA00",
|
128 |
-
background_color="#FFF",
|
129 |
-
background_image=pil_image,
|
130 |
-
update_streamlit=True,
|
131 |
-
height=get_image_size(pil_image)[0],
|
132 |
-
width=get_image_size(pil_image)[1],
|
133 |
-
drawing_mode="rect",
|
134 |
-
point_display_radius=0,
|
135 |
-
key=canvas_hash,
|
136 |
-
)
|
137 |
-
|
138 |
-
if canvas_result.json_data is not None or whole_image:
|
139 |
-
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
|
140 |
-
bbox_list = None
|
141 |
-
if objects.shape[0] > 0:
|
142 |
-
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
|
143 |
-
boxes["right"] = boxes["left"] + boxes["width"]
|
144 |
-
boxes["bottom"] = boxes["top"] + boxes["height"]
|
145 |
-
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
|
146 |
-
if whole_image:
|
147 |
-
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
|
148 |
-
|
149 |
-
if bbox_list:
|
150 |
-
with col2:
|
151 |
-
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
|
152 |
-
for idx, inference in enumerate(reversed(inferences)):
|
153 |
-
st.markdown(f"### {len(inferences) - idx}")
|
154 |
-
katex_markdown = replace_katex_invalid(inference)
|
155 |
-
st.markdown(katex_markdown)
|
156 |
-
st.code(inference)
|
157 |
-
st.divider()
|
158 |
-
|
159 |
-
with col2:
|
160 |
-
tips = """
|
161 |
-
### Usage tips
|
162 |
-
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
|
163 |
-
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
|
164 |
-
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
|
165 |
-
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
|
166 |
-
"""
|
167 |
-
st.markdown(tips)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ocr_image.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os.path
|
3 |
-
|
4 |
-
from texify.inference import batch_inference
|
5 |
-
from texify.model.model import load_model
|
6 |
-
from texify.model.processor import load_processor
|
7 |
-
from PIL import Image
|
8 |
-
from texify.settings import settings
|
9 |
-
from texify.util import is_valid_image
|
10 |
-
import json
|
11 |
-
|
12 |
-
|
13 |
-
def inference_single_image(image_path, json_path, model, processor):
|
14 |
-
image = Image.open(image_path)
|
15 |
-
text = batch_inference([image], model, processor)
|
16 |
-
write_data = [{"image_path": image_path, "text": text[0]}]
|
17 |
-
with open(json_path, "w+") as f:
|
18 |
-
json_repr = json.dumps(write_data, indent=4)
|
19 |
-
f.write(json_repr)
|
20 |
-
|
21 |
-
|
22 |
-
def inference_image_dir(image_dir, json_path, model, processor, max=None):
|
23 |
-
image_paths = [os.path.join(image_dir, image_name) for image_name in os.listdir(image_dir)]
|
24 |
-
image_paths = [ip for ip in image_paths if is_valid_image(ip)]
|
25 |
-
if max:
|
26 |
-
image_paths = image_paths[:max]
|
27 |
-
|
28 |
-
write_data = []
|
29 |
-
for i in range(0, len(image_paths), settings.BATCH_SIZE):
|
30 |
-
batch = image_paths[i:i+settings.BATCH_SIZE]
|
31 |
-
images = [Image.open(image_path) for image_path in batch]
|
32 |
-
text = batch_inference(images, model, processor)
|
33 |
-
for image_path, t in zip(batch, text):
|
34 |
-
write_data.append({"image_path": image_path, "text": t})
|
35 |
-
|
36 |
-
with open(json_path, "w+") as f:
|
37 |
-
json_repr = json.dumps(write_data, indent=4)
|
38 |
-
f.write(json_repr)
|
39 |
-
|
40 |
-
|
41 |
-
def main():
|
42 |
-
parser = argparse.ArgumentParser(description="OCR an image of a LaTeX equation.")
|
43 |
-
parser.add_argument("image", type=str, help="Path to image or folder of images to OCR.")
|
44 |
-
parser.add_argument("--max", type=int, help="Maximum number of images to OCR if a folder is passes.", default=None)
|
45 |
-
parser.add_argument("--json_path", type=str, help="Path to JSON file to save results to.", default=os.path.join(settings.DATA_DIR, "results.json"))
|
46 |
-
args = parser.parse_args()
|
47 |
-
|
48 |
-
image_path = args.image
|
49 |
-
model = load_model()
|
50 |
-
processor = load_processor()
|
51 |
-
|
52 |
-
json_path = os.path.abspath(args.json_path)
|
53 |
-
os.makedirs(os.path.dirname(json_path), exist_ok=True)
|
54 |
-
|
55 |
-
if os.path.isfile(image_path):
|
56 |
-
inference_single_image(image_path, json_path, model, processor)
|
57 |
-
else:
|
58 |
-
inference_image_dir(image_path, json_path, model, processor, args.max)
|
59 |
-
|
60 |
-
print(f"Wrote results to {json_path}")
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
main()
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
poetry.lock
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
[tool.poetry]
|
2 |
-
name = "texify"
|
3 |
-
version = "0.1.6"
|
4 |
-
description = "OCR for latex images"
|
5 |
-
authors = ["Vik Paruchuri <vik.paruchuri@gmail.com>"]
|
6 |
-
readme = "README.md"
|
7 |
-
license = "GPL-3.0-or-later"
|
8 |
-
repository = "https://github.com/VikParuchuri/texify"
|
9 |
-
keywords = ["ocr", "latex", "markdown", "pdf"]
|
10 |
-
include = [
|
11 |
-
"ocr_app.py",
|
12 |
-
"ocr_image.py",
|
13 |
-
"run_ocr_app.py",
|
14 |
-
"benchmark.py"
|
15 |
-
]
|
16 |
-
|
17 |
-
[tool.poetry.dependencies]
|
18 |
-
python = ">=3.10,<4.0"
|
19 |
-
streamlit = "^1.29.0"
|
20 |
-
transformers = "^4.36.2"
|
21 |
-
torch = "^2.1.2"
|
22 |
-
pydantic = "^2.5.2"
|
23 |
-
pydantic-settings = "^2.1.0"
|
24 |
-
Pillow = "^10.1.0"
|
25 |
-
numpy = "^1.26.2"
|
26 |
-
pypdfium2 = "^4.25.0"
|
27 |
-
python-dotenv = "^1.0.0"
|
28 |
-
watchdog = "^3.0.0"
|
29 |
-
ftfy = "^6.1.3"
|
30 |
-
tabulate = "^0.9.0"
|
31 |
-
streamlit-drawable-canvas-jsretry = "^0.9.3"
|
32 |
-
|
33 |
-
[tool.poetry.group.dev.dependencies]
|
34 |
-
jupyter = "^1.0.0"
|
35 |
-
evaluate = "^0.4.1"
|
36 |
-
rapidfuzz = "^3.5.2"
|
37 |
-
pyperclip = "^1.8.2"
|
38 |
-
nltk = "^3.8.1"
|
39 |
-
|
40 |
-
[tool.poetry.scripts]
|
41 |
-
texify = "ocr_image:main"
|
42 |
-
texify_gui = "run_ocr_app:run_app"
|
43 |
-
texify_benchmark = "benchmark:main"
|
44 |
-
|
45 |
-
[build-system]
|
46 |
-
requires = ["poetry-core"]
|
47 |
-
build-backend = "poetry.core.masonry.api"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
transformers
|
2 |
-
torch
|
3 |
-
accelerate
|
|
|
|
1 |
transformers
|
2 |
+
torch==2.2.0
|
3 |
+
accelerate
|
4 |
+
flash-attn==2.2.0
|
run_ocr_app.py
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
import os
|
3 |
-
|
4 |
-
|
5 |
-
def run_app():
|
6 |
-
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
7 |
-
ocr_app_path = os.path.join(cur_dir, "ocr_app.py")
|
8 |
-
subprocess.run(["streamlit", "run", ocr_app_path])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/verify_benchmark_scores.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import argparse
|
3 |
-
|
4 |
-
|
5 |
-
def verify_scores(file_path):
|
6 |
-
with open(file_path, 'r') as file:
|
7 |
-
data = json.load(file)
|
8 |
-
|
9 |
-
scores = data["texify"]["scores"]
|
10 |
-
|
11 |
-
if scores["bleu"] <= 0.6 or scores["meteor"] <= 0.6 or scores["edit"] > 0.2:
|
12 |
-
print(scores)
|
13 |
-
raise ValueError("Scores do not meet the required threshold")
|
14 |
-
|
15 |
-
|
16 |
-
if __name__ == "__main__":
|
17 |
-
parser = argparse.ArgumentParser(description="Verify benchmark scores")
|
18 |
-
parser.add_argument("file_path", type=str, help="Path to the json file")
|
19 |
-
args = parser.parse_args()
|
20 |
-
verify_scores(args.file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|