Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
""" Florence-2 configuration""" | |
from typing import Optional | |
from transformers import AutoConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Florence2VisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the Florence2VisionModel architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
The dropout rate of the drop path layer. | |
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]): | |
The patch size of the image. | |
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]): | |
The patch stride of the image. | |
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]): | |
The patch padding of the image. | |
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]): | |
Whether to apply layer normalization before the patch embedding layer. | |
enable_checkpoint (`bool`, *optional*, defaults to False): | |
Whether to enable checkpointing. | |
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]): | |
The dimension of the embedding layer. | |
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): | |
The number of attention heads. | |
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): | |
The number of groups. | |
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]): | |
The depth of the model. | |
window_size (`int`, *optional*, defaults to 12): | |
The window size of the model. | |
projection_dim (`int`, *optional*, defaults to 1024): | |
The dimension of the projection layer. | |
visual_temporal_embedding (`dict`, *optional*): | |
The configuration of the visual temporal embedding. | |
image_pos_embed (`dict`, *optional*): | |
The configuration of the image position embedding. | |
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]): | |
The source of the image feature. | |
Example: | |
```python | |
>>> from transformers import Florence2VisionConfig, Florence2VisionModel | |
>>> # Initializing a Florence2 Vision style configuration | |
>>> configuration = Florence2VisionConfig() | |
>>> # Initializing a model (with random weights) | |
>>> model = Florence2VisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "florence2_vision" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
drop_path_rate=0.1, | |
patch_size=[7, 3, 3, 3], | |
patch_stride=[4, 2, 2, 2], | |
patch_padding=[3, 1, 1, 1], | |
patch_prenorm=[False, True, True, True], | |
enable_checkpoint=False, | |
dim_embed=[256, 512, 1024, 2048], | |
num_heads=[8, 16, 32, 64], | |
num_groups=[8, 16, 32, 64], | |
depths=[1, 1, 9, 1], | |
window_size=12, | |
projection_dim=1024, | |
visual_temporal_embedding=None, | |
image_pos_embed=None, | |
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"], | |
**kwargs, | |
): | |
self.drop_path_rate = drop_path_rate | |
self.patch_size = patch_size | |
self.patch_stride = patch_stride | |
self.patch_padding = patch_padding | |
self.patch_prenorm = patch_prenorm | |
self.enable_checkpoint = enable_checkpoint | |
self.dim_embed = dim_embed | |
self.num_heads = num_heads | |
self.num_groups = num_groups | |
self.depths = depths | |
self.window_size = window_size | |
self.projection_dim = projection_dim | |
self.visual_temporal_embedding = visual_temporal_embedding | |
self.image_pos_embed = image_pos_embed | |
self.image_feature_source = image_feature_source | |
super().__init__(**kwargs) | |
class Florence2LanguageConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the BART | |
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 51289): | |
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Florence2LanguageModel`]. | |
d_model (`int`, *optional*, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
encoder_layers (`int`, *optional*, defaults to 12): | |
Number of encoder layers. | |
decoder_layers (`int`, *optional*, defaults to 12): | |
Number of decoder layers. | |
encoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
encoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
classifier_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for classifier. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
encoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
decoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
scale_embedding (`bool`, *optional*, defaults to `False`): | |
Scale embeddings by diving by sqrt(d_model). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
num_labels (`int`, *optional*, defaults to 3): | |
The number of labels to use in [`Florence2LanguageForSequenceClassification`]. | |
forced_eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the token to force as the last generated token when `max_length` is reached. Usually set to | |
`eos_token_id`. | |
Example: | |
```python | |
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel | |
>>> # Initializing a Florence2 Language style configuration | |
>>> configuration = Florence2LanguageConfig() | |
>>> # Initializing a model (with random weights) | |
>>> model = Florence2LangaugeModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "florence2_language" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
def __init__( | |
self, | |
vocab_size=51289, | |
max_position_embeddings=1024, | |
encoder_layers=12, | |
encoder_ffn_dim=4096, | |
encoder_attention_heads=16, | |
decoder_layers=12, | |
decoder_ffn_dim=4096, | |
decoder_attention_heads=16, | |
encoder_layerdrop=0.0, | |
decoder_layerdrop=0.0, | |
activation_function="gelu", | |
d_model=1024, | |
dropout=0.1, | |
attention_dropout=0.0, | |
activation_dropout=0.0, | |
init_std=0.02, | |
classifier_dropout=0.0, | |
scale_embedding=False, | |
use_cache=True, | |
num_labels=3, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
is_encoder_decoder=True, | |
decoder_start_token_id=2, | |
forced_eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_layers = decoder_layers | |
self.decoder_attention_heads = decoder_attention_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layerdrop = decoder_layerdrop | |
self.classifier_dropout = classifier_dropout | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
super().__init__( | |
num_labels=num_labels, | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
decoder_start_token_id=decoder_start_token_id, | |
forced_eos_token_id=forced_eos_token_id, | |
**kwargs, | |
) | |
# ensure backward compatibility for BART CNN models | |
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): | |
self.forced_bos_token_id = self.bos_token_id | |
warnings.warn( | |
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " | |
"The config can simply be saved and uploaded again to be fixed." | |
) | |
class Florence2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an | |
Florence-2 model according to the specified arguments, defining the model architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`Florence2VisionConfig`, *optional*): | |
Custom vision config or dict | |
text_config (`Union[AutoConfig, dict]`, *optional*): | |
The config object of the text backbone. | |
ignore_index (`int`, *optional*, defaults to -100): | |
The ignore index for the loss function. | |
vocab_size (`int`, *optional*, defaults to 51289): | |
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`] | |
projection_dim (`int`, *optional*, defaults to 1024): | |
Dimension of the multimodal projection space. | |
Example: | |
```python | |
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig | |
>>> # Initializing a clip-like vision config | |
>>> vision_config = CLIPVisionConfig() | |
>>> # Initializing a Bart config | |
>>> text_config = BartConfig() | |
>>> # Initializing a Florence-2 configuration | |
>>> configuration = Florence2Config(vision_config, text_config) | |
>>> # Initializing a model from the florence-2 configuration | |
>>> model = Florence2ForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "florence2" | |
is_composition = False | |
def __init__( | |
self, | |
vision_config=None, | |
text_config=None, | |
ignore_index=-100, | |
vocab_size=51289, | |
projection_dim=1024, | |
**kwargs, | |
): | |
self.ignore_index = ignore_index | |
self.vocab_size = vocab_size | |
self.projection_dim = projection_dim | |
if vision_config is not None: | |
vision_config = PretrainedConfig(**vision_config) | |
self.vision_config = vision_config | |
self.vocab_size = self.vocab_size | |
self.text_config = text_config | |
if text_config is not None: | |
self.text_config = Florence2LanguageConfig(**text_config) | |
super().__init__(**kwargs) | |