Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import spaces
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
4 |
from torch import Tensor
|
@@ -82,8 +81,6 @@ def embedding_worker():
|
|
82 |
|
83 |
threading.Thread(target=embedding_worker, daemon=True).start()
|
84 |
|
85 |
-
|
86 |
-
@spaces.GPU
|
87 |
def compute_embeddings(selected_task, input_text):
|
88 |
try:
|
89 |
task_description = tasks[selected_task]
|
@@ -104,7 +101,6 @@ def compute_embeddings(selected_task, input_text):
|
|
104 |
clear_cuda_cache()
|
105 |
return embeddings_list
|
106 |
|
107 |
-
@spaces.GPU
|
108 |
def decode_embedding(embedding_str):
|
109 |
try:
|
110 |
embedding = [float(num) for num in embedding_str.split(',')]
|
@@ -114,7 +110,6 @@ def decode_embedding(embedding_str):
|
|
114 |
except Exception as e:
|
115 |
return f"Error in decoding: {str(e)}"
|
116 |
|
117 |
-
@spaces.GPU
|
118 |
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
119 |
try:
|
120 |
task_description = tasks[selected_task]
|
@@ -145,7 +140,6 @@ def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, ext
|
|
145 |
clear_cuda_cache()
|
146 |
return similarity_scores
|
147 |
|
148 |
-
@spaces.GPU
|
149 |
def compute_cosine_similarity(emb1, emb2):
|
150 |
tensor1 = torch.tensor(emb1).to(device).half()
|
151 |
tensor2 = torch.tensor(emb2).to(device).half()
|
@@ -155,7 +149,6 @@ def compute_cosine_similarity(emb1, emb2):
|
|
155 |
return similarity
|
156 |
|
157 |
|
158 |
-
@spaces.GPU
|
159 |
def compute_embeddings_batch(input_texts):
|
160 |
max_length = 2042
|
161 |
processed_texts = [f'Instruct: {task_description}\nQuery: {text}' for text in input_texts]
|
@@ -311,4 +304,4 @@ def app_interface():
|
|
311 |
return demo
|
312 |
|
313 |
app_interface().queue()
|
314 |
-
app_interface().launch()
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
from torch import Tensor
|
|
|
81 |
|
82 |
threading.Thread(target=embedding_worker, daemon=True).start()
|
83 |
|
|
|
|
|
84 |
def compute_embeddings(selected_task, input_text):
|
85 |
try:
|
86 |
task_description = tasks[selected_task]
|
|
|
101 |
clear_cuda_cache()
|
102 |
return embeddings_list
|
103 |
|
|
|
104 |
def decode_embedding(embedding_str):
|
105 |
try:
|
106 |
embedding = [float(num) for num in embedding_str.split(',')]
|
|
|
110 |
except Exception as e:
|
111 |
return f"Error in decoding: {str(e)}"
|
112 |
|
|
|
113 |
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
114 |
try:
|
115 |
task_description = tasks[selected_task]
|
|
|
140 |
clear_cuda_cache()
|
141 |
return similarity_scores
|
142 |
|
|
|
143 |
def compute_cosine_similarity(emb1, emb2):
|
144 |
tensor1 = torch.tensor(emb1).to(device).half()
|
145 |
tensor2 = torch.tensor(emb2).to(device).half()
|
|
|
149 |
return similarity
|
150 |
|
151 |
|
|
|
152 |
def compute_embeddings_batch(input_texts):
|
153 |
max_length = 2042
|
154 |
processed_texts = [f'Instruct: {task_description}\nQuery: {text}' for text in input_texts]
|
|
|
304 |
return demo
|
305 |
|
306 |
app_interface().queue()
|
307 |
+
app_interface().launch(share=True)
|