Tonic commited on
Commit
c2a79f8
1 Parent(s): 61152c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -20
app.py CHANGED
@@ -12,7 +12,7 @@ You can use this Space to test out the current model [intfloat/e5-mistral-7b-ins
12
  You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
13
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
14
  """
15
- # Define the function to pool the last token
16
  def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
17
  left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
18
  if left_padding:
@@ -22,56 +22,41 @@ def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tenso
22
  batch_size = last_hidden_states.shape[0]
23
  return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
24
 
25
- # Define the function to get detailed instruct
26
  def get_detailed_instruct(task_description: str, query: str) -> str:
27
  return f'Instruct: {task_description}\nQuery: {query}'
28
 
29
- # Load tokenizer and model
30
  tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
31
  model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
32
 
33
  @spaces.GPU
34
  def compute_embeddings(*input_texts):
35
- # Check if GPU is available and use it; otherwise, use CPU
36
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
 
38
- # Move model to the chosen device
39
  model.to(device)
40
  max_length = 4096
41
  task = 'Given a web search query, retrieve relevant passages that answer the query'
42
 
43
- # Prepare the input texts
44
  processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
45
-
46
- # Tokenize the input texts
47
  batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
48
  batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
49
  batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
50
-
51
- # Get model outputs
52
  outputs = model(**batch_dict)
53
  embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
54
-
55
- # Normalize embeddings
56
  embeddings = F.normalize(embeddings, p=2, dim=1)
57
- return embeddings.detach().cpu().numpy()
58
-
59
 
60
  def app_interface():
61
  with gr.Blocks() as demo:
62
  gr.Markdown(title)
63
  gr.Markdown(description)
64
 
65
- # Input text boxes
66
  input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)]
67
 
68
- # Button to compute embeddings
69
  compute_button = gr.Button("Compute Embeddings")
70
 
71
- # Output display
72
- output_display = gr.Dataframe(headers=["Embedding"], datatype=["numpy"])
73
 
74
- # Layout
75
  with gr.Row():
76
  with gr.Column():
77
  for text_box in input_text_boxes:
@@ -80,7 +65,6 @@ def app_interface():
80
  compute_button.render()
81
  output_display.render()
82
 
83
- # Function call
84
  compute_button.click(
85
  fn=compute_embeddings,
86
  inputs=input_text_boxes,
 
12
  You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
13
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
14
  """
15
+
16
  def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
17
  left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
18
  if left_padding:
 
22
  batch_size = last_hidden_states.shape[0]
23
  return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
24
 
 
25
  def get_detailed_instruct(task_description: str, query: str) -> str:
26
  return f'Instruct: {task_description}\nQuery: {query}'
27
 
 
28
  tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
29
  model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
30
 
31
  @spaces.GPU
32
  def compute_embeddings(*input_texts):
 
33
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
 
 
35
  model.to(device)
36
  max_length = 4096
37
  task = 'Given a web search query, retrieve relevant passages that answer the query'
38
 
 
39
  processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
 
 
40
  batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
41
  batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
42
  batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
 
 
43
  outputs = model(**batch_dict)
44
  embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
 
 
45
  embeddings = F.normalize(embeddings, p=2, dim=1)
46
+ embeddings_list = embeddings.detach().cpu().numpy().tolist()
47
+ return embeddings_list
48
 
49
  def app_interface():
50
  with gr.Blocks() as demo:
51
  gr.Markdown(title)
52
  gr.Markdown(description)
53
 
 
54
  input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)]
55
 
 
56
  compute_button = gr.Button("Compute Embeddings")
57
 
58
+ output_display = gr.Dataframe(headers=["Embedding Value"], datatype=["number"])
 
59
 
 
60
  with gr.Row():
61
  with gr.Column():
62
  for text_box in input_text_boxes:
 
65
  compute_button.render()
66
  output_display.render()
67
 
 
68
  compute_button.click(
69
  fn=compute_embeddings,
70
  inputs=input_text_boxes,