Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ You can use this Space to test out the current model [intfloat/e5-mistral-7b-ins
|
|
12 |
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
13 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
14 |
"""
|
15 |
-
|
16 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
17 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
18 |
if left_padding:
|
@@ -22,56 +22,41 @@ def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tenso
|
|
22 |
batch_size = last_hidden_states.shape[0]
|
23 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
24 |
|
25 |
-
# Define the function to get detailed instruct
|
26 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
27 |
return f'Instruct: {task_description}\nQuery: {query}'
|
28 |
|
29 |
-
# Load tokenizer and model
|
30 |
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
31 |
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
32 |
|
33 |
@spaces.GPU
|
34 |
def compute_embeddings(*input_texts):
|
35 |
-
# Check if GPU is available and use it; otherwise, use CPU
|
36 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
|
38 |
-
# Move model to the chosen device
|
39 |
model.to(device)
|
40 |
max_length = 4096
|
41 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
42 |
|
43 |
-
# Prepare the input texts
|
44 |
processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
|
45 |
-
|
46 |
-
# Tokenize the input texts
|
47 |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
48 |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
49 |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
50 |
-
|
51 |
-
# Get model outputs
|
52 |
outputs = model(**batch_dict)
|
53 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
54 |
-
|
55 |
-
# Normalize embeddings
|
56 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
57 |
-
|
58 |
-
|
59 |
|
60 |
def app_interface():
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown(title)
|
63 |
gr.Markdown(description)
|
64 |
|
65 |
-
# Input text boxes
|
66 |
input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)]
|
67 |
|
68 |
-
# Button to compute embeddings
|
69 |
compute_button = gr.Button("Compute Embeddings")
|
70 |
|
71 |
-
|
72 |
-
output_display = gr.Dataframe(headers=["Embedding"], datatype=["numpy"])
|
73 |
|
74 |
-
# Layout
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
for text_box in input_text_boxes:
|
@@ -80,7 +65,6 @@ def app_interface():
|
|
80 |
compute_button.render()
|
81 |
output_display.render()
|
82 |
|
83 |
-
# Function call
|
84 |
compute_button.click(
|
85 |
fn=compute_embeddings,
|
86 |
inputs=input_text_boxes,
|
|
|
12 |
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
13 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
14 |
"""
|
15 |
+
|
16 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
17 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
18 |
if left_padding:
|
|
|
22 |
batch_size = last_hidden_states.shape[0]
|
23 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
24 |
|
|
|
25 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
26 |
return f'Instruct: {task_description}\nQuery: {query}'
|
27 |
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
29 |
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
30 |
|
31 |
@spaces.GPU
|
32 |
def compute_embeddings(*input_texts):
|
|
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
|
|
|
35 |
model.to(device)
|
36 |
max_length = 4096
|
37 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
38 |
|
|
|
39 |
processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
|
|
|
|
|
40 |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
41 |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
42 |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
|
|
|
|
43 |
outputs = model(**batch_dict)
|
44 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
|
|
|
|
45 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
46 |
+
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
47 |
+
return embeddings_list
|
48 |
|
49 |
def app_interface():
|
50 |
with gr.Blocks() as demo:
|
51 |
gr.Markdown(title)
|
52 |
gr.Markdown(description)
|
53 |
|
|
|
54 |
input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)]
|
55 |
|
|
|
56 |
compute_button = gr.Button("Compute Embeddings")
|
57 |
|
58 |
+
output_display = gr.Dataframe(headers=["Embedding Value"], datatype=["number"])
|
|
|
59 |
|
|
|
60 |
with gr.Row():
|
61 |
with gr.Column():
|
62 |
for text_box in input_text_boxes:
|
|
|
65 |
compute_button.render()
|
66 |
output_display.render()
|
67 |
|
|
|
68 |
compute_button.click(
|
69 |
fn=compute_embeddings,
|
70 |
inputs=input_text_boxes,
|