SmolFactory / src /train.py
Tonic's picture
improves spaces deployment , configuration for custom settings , adds interface for spaces deployment
5f8b28d
#!/usr/bin/env python3
"""
SmolLM3 Fine-tuning Script for FlexAI Console
Based on the nanoGPT structure but adapted for SmolLM3 model
"""
import os
import sys
import argparse
import json
import torch
import logging
from pathlib import Path
from typing import Optional, Dict, Any
# Add the current directory to the path for imports
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Add project root to path for config imports
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if project_root not in sys.path:
sys.path.insert(0, project_root)
try:
from config import get_config
except ImportError:
# Fallback: try direct import
sys.path.insert(0, os.path.join(project_root, 'src'))
from config import get_config
from model import SmolLM3Model
from data import SmolLM3Dataset
from trainer import SmolLM3Trainer, SmolLM3DPOTrainer
from monitoring import create_monitor_from_config
def setup_logging():
"""Setup logging configuration"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler('training.log')
]
)
return logging.getLogger(__name__)
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='SmolLM3 Fine-tuning Script')
# Configuration file
parser.add_argument('config', type=str, help='Path to configuration file')
# Dataset arguments
parser.add_argument('--dataset_dir', type=str, default='my_dataset',
help='Path to dataset directory within /input')
# Checkpoint arguments
parser.add_argument('--out_dir', type=str, default='/output-checkpoint',
help='Output directory for checkpoints')
parser.add_argument('--init_from', type=str, default='scratch',
choices=['scratch', 'resume', 'pretrained'],
help='Initialization method')
# Training arguments
parser.add_argument('--max_iters', type=int, default=None,
help='Maximum number of training iterations')
parser.add_argument('--batch_size', type=int, default=None,
help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=None,
help='Learning rate')
parser.add_argument('--gradient_accumulation_steps', type=int, default=None,
help='Gradient accumulation steps')
# Model arguments
parser.add_argument('--model_name', type=str,
default='HuggingFaceTB/SmolLM3-3B',
help='Model name or path')
parser.add_argument('--max_seq_length', type=int, default=4096,
help='Maximum sequence length')
# Logging and saving
parser.add_argument('--save_steps', type=int, default=500,
help='Save checkpoint every N steps')
parser.add_argument('--eval_steps', type=int, default=100,
help='Evaluate every N steps')
parser.add_argument('--logging_steps', type=int, default=10,
help='Log every N steps')
# Trackio monitoring arguments
parser.add_argument('--enable_tracking', action='store_true', default=True,
help='Enable Trackio experiment tracking')
parser.add_argument('--trackio_url', type=str, default=None,
help='Trackio server URL')
parser.add_argument('--trackio_token', type=str, default=None,
help='Trackio authentication token')
parser.add_argument('--experiment_name', type=str, default=None,
help='Custom experiment name for tracking')
# HF Datasets arguments
parser.add_argument('--hf_token', type=str, default=None,
help='Hugging Face token for dataset access')
parser.add_argument('--dataset_repo', type=str, default=None,
help='HF Dataset repository for experiment storage')
# Trainer type selection
parser.add_argument('--trainer_type', type=str, choices=['sft', 'dpo'], default=None,
help='Trainer type: sft (Supervised Fine-tuning) or dpo (Direct Preference Optimization)')
return parser.parse_args()
def main():
"""Main training function"""
args = parse_args()
logger = setup_logging()
logger.info("Starting SmolLM3 fine-tuning...")
logger.info(f"Arguments: {vars(args)}")
# Load configuration
config = get_config(args.config)
# Override config with command line arguments
if args.max_iters is not None:
config.max_iters = args.max_iters
if args.batch_size is not None:
config.batch_size = args.batch_size
if args.learning_rate is not None:
config.learning_rate = args.learning_rate
if args.gradient_accumulation_steps is not None:
config.gradient_accumulation_steps = args.gradient_accumulation_steps
# Override Trackio configuration
if args.enable_tracking is not None:
config.enable_tracking = args.enable_tracking
if args.trackio_url is not None:
config.trackio_url = args.trackio_url
if args.trackio_token is not None:
config.trackio_token = args.trackio_token
if args.experiment_name is not None:
config.experiment_name = args.experiment_name
# Override HF Datasets configuration
if args.hf_token is not None:
os.environ['HF_TOKEN'] = args.hf_token
if args.dataset_repo is not None:
os.environ['TRACKIO_DATASET_REPO'] = args.dataset_repo
# Setup paths
output_path = args.out_dir
# Ensure output directory exists
os.makedirs(output_path, exist_ok=True)
logger.info(f"Output path: {output_path}")
# Initialize monitoring (supports local-only mode)
monitor = None
try:
monitoring_mode = getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both')).lower()
should_create_monitor = (
monitoring_mode in ('both', 'dataset', 'trackio', 'none')
and (getattr(config, 'enable_tracking', True) or monitoring_mode in ('dataset', 'none'))
)
if should_create_monitor:
monitor = create_monitor_from_config(config, args.experiment_name)
logger.info(f"βœ… Monitoring initialized for experiment: {monitor.experiment_name}")
logger.info(f"πŸ“Š Monitoring mode: {monitor.monitoring_mode}")
logger.info(f"πŸ“Š Dataset repository: {monitor.dataset_repo}")
# Log configuration
config_dict = {k: v for k, v in vars(config).items() if not k.startswith('_')}
monitor.log_configuration(config_dict)
except Exception as e:
logger.error(f"Failed to initialize monitoring: {e}")
logger.warning("Continuing without monitoring...")
# Initialize model
model = SmolLM3Model(
model_name=args.model_name,
max_seq_length=args.max_seq_length,
config=config
)
# Determine dataset path
# Check if using Hugging Face dataset or local dataset
if hasattr(config, 'dataset_name') and config.dataset_name:
# Use Hugging Face dataset
dataset_path = config.dataset_name
logger.info(f"Using Hugging Face dataset: {dataset_path}")
else:
# Use local dataset from config or command line argument
if args.dataset_dir:
dataset_path = os.path.join('/input', args.dataset_dir)
else:
dataset_path = os.path.join('/input', config.data_dir)
logger.info(f"Using local dataset: {dataset_path}")
# Load dataset with filtering options and sampling
dataset = SmolLM3Dataset(
data_path=dataset_path,
tokenizer=model.tokenizer,
max_seq_length=args.max_seq_length,
filter_bad_entries=getattr(config, 'filter_bad_entries', False),
bad_entry_field=getattr(config, 'bad_entry_field', 'bad_entry'),
sample_size=getattr(config, 'sample_size', None),
sample_seed=getattr(config, 'sample_seed', 42)
)
# Determine trainer type (command line overrides config)
trainer_type = args.trainer_type or getattr(config, 'trainer_type', 'sft')
logger.info(f"Using trainer type: {trainer_type}")
# Import the appropriate trainer class
# from trainer import SmolLM3Trainer, SmolLM3DPOTrainer # This line is removed as per the edit hint
# Initialize trainer based on type
if trainer_type.lower() == 'dpo':
logger.info("Initializing DPO trainer...")
trainer = SmolLM3DPOTrainer(
model=model,
dataset=dataset,
config=config,
output_dir=output_path
)
else:
logger.info("Initializing SFT trainer...")
trainer = SmolLM3Trainer(
model=model,
dataset=dataset,
config=config,
output_dir=output_path,
init_from=args.init_from
)
# Start training
try:
trainer.train()
logger.info("Training completed successfully!")
# Log training summary
if monitor:
try:
summary = {
'final_loss': getattr(trainer, 'final_loss', None),
'total_steps': getattr(trainer, 'total_steps', None),
'training_duration': getattr(trainer, 'training_duration', None),
'model_path': output_path,
'config_file': args.config
}
monitor.log_training_summary(summary)
logger.info("βœ… Training summary logged")
except Exception as e:
logger.error(f"Failed to log training summary: {e}")
except Exception as e:
logger.error(f"Training failed: {e}")
# Log error to monitoring
if monitor:
try:
error_summary = {
'error': str(e),
'status': 'failed',
'model_path': output_path,
'config_file': args.config
}
monitor.log_training_summary(error_summary)
except Exception as log_error:
logger.error(f"Failed to log error to monitoring: {log_error}")
raise
finally:
# Close monitoring
if monitor:
try:
monitor.close()
logger.info("βœ… Monitoring session closed")
except Exception as e:
logger.error(f"Failed to close monitoring: {e}")
if __name__ == '__main__':
main()