SmolFactory / src /model.py
Tonic's picture
attempt to fix bfloat16 issue
6c63876 verified
"""
SmolLM3 Model Wrapper
Handles model loading, tokenizer, and training setup
"""
import os
import torch
import torch.nn as nn
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoConfig,
TrainingArguments,
Trainer
)
from typing import Optional, Dict, Any
import logging
logger = logging.getLogger(__name__)
class SmolLM3Model:
"""Wrapper for SmolLM3 model and tokenizer"""
def __init__(
self,
model_name: str = "HuggingFaceTB/SmolLM3-3B",
max_seq_length: int = 4096,
config: Optional[Any] = None,
device_map: Optional[str] = None,
torch_dtype: Optional[torch.dtype] = None
):
self.model_name = model_name
self.max_seq_length = max_seq_length
self.config = config
# Set device and dtype
if torch_dtype is None:
if torch.cuda.is_available():
# Check if config specifies mixed precision
if config and hasattr(config, 'fp16') and config.fp16:
# Use fp16 if explicitly configured
self.torch_dtype = torch.float16
elif config and hasattr(config, 'bf16') and config.bf16:
# Use bf16 if explicitly configured
self.torch_dtype = torch.bfloat16
else:
# Default to bfp16 for better compatibility
self.torch_dtype = torch.bfloat16
else:
self.torch_dtype = torch.float32
else:
self.torch_dtype = torch_dtype
if device_map is None:
self.device_map = "auto" if torch.cuda.is_available() else "cpu"
else:
self.device_map = device_map
# Load tokenizer and model
self._load_tokenizer()
self._load_model()
def _load_tokenizer(self):
"""Load the tokenizer"""
logger.info("Loading tokenizer from %s", self.model_name)
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
use_fast=True
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Tokenizer loaded successfully. Vocab size: %d", self.tokenizer.vocab_size)
except Exception as e:
logger.error("Failed to load tokenizer: %s", e)
raise
def _load_model(self):
"""Load the model"""
logger.info("Loading model from %s", self.model_name)
try:
# Load model configuration
model_config = AutoConfig.from_pretrained(
self.model_name,
trust_remote_code=True
)
# Update configuration if needed
if hasattr(model_config, 'max_position_embeddings'):
model_config.max_position_embeddings = self.max_seq_length
# SmolLM3-specific optimizations for long context
if hasattr(model_config, 'rope_scaling'):
# Enable YaRN scaling for long context
model_config.rope_scaling = {"type": "yarn", "factor": 2.0}
logger.info("Enabled YaRN scaling for long context")
# Load model
model_kwargs = {
"torch_dtype": self.torch_dtype,
"device_map": self.device_map,
"trust_remote_code": True
}
# Only add flash attention if the model supports it
if hasattr(self.config, 'use_flash_attention') and self.config.use_flash_attention:
try:
# Test if the model supports flash attention
test_config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
if hasattr(test_config, 'use_flash_attention_2'):
model_kwargs["use_flash_attention_2"] = True
logger.info("Enabled Flash Attention 2 for better long context performance")
except:
# If flash attention is not supported, skip it
pass
# Try to load the model, fallback to fp16 if bf16 fails
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
config=model_config,
**model_kwargs
)
except RuntimeError as e:
if "bfloat16" in str(e) or "BFloat16" in str(e):
logger.warning("BFloat16 not supported, falling back to Float16")
model_kwargs["torch_dtype"] = torch.float16
self.torch_dtype = torch.float16
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
config=model_config,
**model_kwargs
)
else:
raise
# Enable gradient checkpointing if specified
if self.config and self.config.use_gradient_checkpointing:
self.model.gradient_checkpointing_enable()
logger.info("Model loaded successfully. Parameters: {:,}".format(self.model.num_parameters()))
logger.info("Max sequence length: %d", self.max_seq_length)
except Exception as e:
logger.error("Failed to load model: %s", e)
raise
def get_training_arguments(self, output_dir: str, **kwargs) -> TrainingArguments:
"""Get training arguments for the Trainer"""
if self.config is None:
raise ValueError("Config is required to get training arguments")
# Merge config with kwargs
training_args = {
"output_dir": output_dir,
"per_device_train_batch_size": self.config.batch_size,
"per_device_eval_batch_size": self.config.batch_size,
"gradient_accumulation_steps": self.config.gradient_accumulation_steps,
"learning_rate": self.config.learning_rate,
"weight_decay": self.config.weight_decay,
"warmup_steps": self.config.warmup_steps,
"max_steps": self.config.max_iters,
"save_steps": self.config.save_steps,
"eval_steps": self.config.eval_steps,
"logging_steps": self.config.logging_steps,
"save_total_limit": self.config.save_total_limit,
"eval_strategy": self.config.eval_strategy,
"metric_for_best_model": self.config.metric_for_best_model,
"greater_is_better": self.config.greater_is_better,
"load_best_model_at_end": self.config.load_best_model_at_end,
"fp16": self.config.fp16,
"bf16": self.config.bf16,
# Only enable DDP if multiple GPUs are available
"ddp_backend": self.config.ddp_backend if torch.cuda.device_count() > 1 else None,
"ddp_find_unused_parameters": self.config.ddp_find_unused_parameters if torch.cuda.device_count() > 1 else False,
"report_to": None, # Disable external logging - use None instead of "none"
"remove_unused_columns": False,
"dataloader_pin_memory": getattr(self.config, 'dataloader_pin_memory', False),
"group_by_length": getattr(self.config, 'group_by_length', True),
"length_column_name": "length",
"ignore_data_skip": False,
"seed": 42,
"data_seed": 42,
"dataloader_num_workers": getattr(self.config, 'dataloader_num_workers', 4),
"max_grad_norm": getattr(self.config, 'max_grad_norm', 1.0),
"optim": self.config.optimizer,
"lr_scheduler_type": self.config.scheduler,
"warmup_ratio": 0.1,
"save_strategy": "steps",
"logging_strategy": "steps",
"prediction_loss_only": True,
}
# Ensure boolean parameters are properly typed
if "dataloader_pin_memory" in training_args:
training_args["dataloader_pin_memory"] = bool(training_args["dataloader_pin_memory"])
if "group_by_length" in training_args:
training_args["group_by_length"] = bool(training_args["group_by_length"])
if "prediction_loss_only" in training_args:
training_args["prediction_loss_only"] = bool(training_args["prediction_loss_only"])
if "ignore_data_skip" in training_args:
training_args["ignore_data_skip"] = bool(training_args["ignore_data_skip"])
if "remove_unused_columns" in training_args:
training_args["remove_unused_columns"] = bool(training_args["remove_unused_columns"])
if "ddp_find_unused_parameters" in training_args:
training_args["ddp_find_unused_parameters"] = bool(training_args["ddp_find_unused_parameters"])
if "fp16" in training_args:
training_args["fp16"] = bool(training_args["fp16"])
if "bf16" in training_args:
training_args["bf16"] = bool(training_args["bf16"])
if "load_best_model_at_end" in training_args:
training_args["load_best_model_at_end"] = bool(training_args["load_best_model_at_end"])
if "greater_is_better" in training_args:
training_args["greater_is_better"] = bool(training_args["greater_is_better"])
# Add dataloader_prefetch_factor if it exists in config
if hasattr(self.config, 'dataloader_prefetch_factor'):
try:
# Test if the parameter is supported by creating a dummy TrainingArguments
test_args = TrainingArguments(output_dir="/tmp/test", dataloader_prefetch_factor=2)
training_args["dataloader_prefetch_factor"] = self.config.dataloader_prefetch_factor
logger.info("Added dataloader_prefetch_factor: %d", self.config.dataloader_prefetch_factor)
except Exception as e:
logger.warning("dataloader_prefetch_factor not supported in this transformers version: %s", e)
# Remove the parameter if it's not supported
if "dataloader_prefetch_factor" in training_args:
del training_args["dataloader_prefetch_factor"]
# Override with kwargs
training_args.update(kwargs)
# Clean up any None values that might cause issues
training_args = {k: v for k, v in training_args.items() if v is not None}
return TrainingArguments(**training_args)
def save_pretrained(self, path: str):
"""Save model and tokenizer"""
logger.info("Saving model and tokenizer to %s", path)
os.makedirs(path, exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
# Save configuration
if self.config:
import json
config_dict = {k: v for k, v in self.config.__dict__.items()
if not k.startswith('_')}
with open(os.path.join(path, 'training_config.json'), 'w') as f:
json.dump(config_dict, f, indent=2, default=str)
def load_checkpoint(self, checkpoint_path: str):
"""Load model from checkpoint"""
logger.info("Loading checkpoint from %s", checkpoint_path)
try:
self.model = AutoModelForCausalLM.from_pretrained(
checkpoint_path,
torch_dtype=self.torch_dtype,
device_map=self.device_map,
trust_remote_code=True
)
logger.info("Checkpoint loaded successfully")
except Exception as e:
logger.error("Failed to load checkpoint: %s", e)
raise