SmolFactory / config /train_smollm3_openhermes_fr_a100_multiple_passes.py
Tonic's picture
adds formatting fix
ebe598e verified
"""
SmolLM3 Training Configuration for OpenHermes-FR Dataset - Multiple Passes
Optimized for A100 GPUs with multiple passes (3-5 epochs) on 800k+ datapoints
"""
import os
from dataclasses import dataclass
from typing import Optional
from config.train_smollm3 import SmolLM3Config
@dataclass
class SmolLM3ConfigOpenHermesFRMultiplePasses(SmolLM3Config):
"""Configuration for SmolLM3 fine-tuning with multiple passes on OpenHermes-FR dataset"""
# Model configuration - optimized for A100
model_name: str = "HuggingFaceTB/SmolLM3-3B"
max_seq_length: int = 8192 # Increased for better context understanding
use_flash_attention: bool = True
use_gradient_checkpointing: bool = False # Disabled for A100 efficiency
# Training configuration - Multiple passes optimized
batch_size: int = 6 # Slightly smaller for stability during long training
gradient_accumulation_steps: int = 20 # Effective batch size = 6 * 20 = 120
learning_rate: float = 3e-6 # Conservative LR for multiple passes
weight_decay: float = 0.01
warmup_steps: int = 2000 # Longer warmup for multiple passes
max_iters: int = 25000 # 4 passes on 800k dataset (25k steps)
eval_interval: int = 1000 # Less frequent evaluation
log_interval: int = 50 # Less frequent logging
save_interval: int = 2000 # Less frequent saving
# Optimizer configuration - stability focused
optimizer: str = "adamw_torch"
beta1: float = 0.9
beta2: float = 0.999 # Higher beta2 for stability
eps: float = 1e-8
# Scheduler configuration - longer training with multiple passes
scheduler: str = "cosine"
min_lr: float = 3e-7 # Lower min LR
# Mixed precision - A100 optimized
fp16: bool = False # Use bf16 for A100
bf16: bool = True # Better for A100
# DDP configuration
ddp_backend: str = "nccl"
ddp_find_unused_parameters: bool = False
# Logging and saving - optimized for long training
save_steps: int = 2000
eval_steps: int = 1000
logging_steps: int = 50
save_total_limit: Optional[int] = 8 # Keep more checkpoints for long training
# Evaluation
eval_strategy: str = "steps"
metric_for_best_model: str = "eval_loss"
greater_is_better: bool = False
load_best_model_at_end: bool = True
# OpenHermes-FR Dataset configuration
dataset_name: str = "legmlai/openhermes-fr"
dataset_split: str = "train"
input_field: str = "prompt"
target_field: str = "accepted_completion"
filter_bad_entries: bool = True
bad_entry_field: str = "bad_entry"
# Data configuration (not used for HF datasets but kept for compatibility)
data_dir: str = None
train_file: str = None
validation_file: Optional[str] = None
test_file: Optional[str] = None
# Chat template configuration
use_chat_template: bool = True
chat_template_kwargs: dict = None
# Trackio monitoring configuration
enable_tracking: bool = True
trackio_url: Optional[str] = None
trackio_token: Optional[str] = None
log_artifacts: bool = True
log_metrics: bool = True
log_config: bool = True
experiment_name: Optional[str] = None
# HF Datasets configuration
hf_token: Optional[str] = None
dataset_repo: Optional[str] = None
# Additional A100 optimizations
dataloader_num_workers: int = 8 # More workers for faster data loading
dataloader_pin_memory: bool = True
dataloader_prefetch_factor: int = 2
# Memory optimizations
max_grad_norm: float = 1.0 # Gradient clipping
group_by_length: bool = True # Group similar length sequences
# Training duration calculations
# With 800k datapoints and effective batch size of 120:
# Steps per epoch = 800,000 / 120 = 6,667 steps
# For 3 passes: 6,667 * 3 = 20,000 steps
# For 4 passes: 6,667 * 4 = 26,667 steps
# For 5 passes: 6,667 * 5 = 33,333 steps
# Current max_iters = 25,000 (about 3.75 passes)
def __post_init__(self):
if self.chat_template_kwargs is None:
self.chat_template_kwargs = {
"add_generation_prompt": True,
"no_think_system_message": True # Set to True to add /no_think tag
}
# Validate configuration
if self.fp16 and self.bf16:
raise ValueError("Cannot use both fp16 and bf16")
if self.max_seq_length > 131072: # 128k limit
raise ValueError("max_seq_length cannot exceed 131072")
# Calculate training statistics
effective_batch_size = self.batch_size * self.gradient_accumulation_steps
steps_per_epoch = 800000 // effective_batch_size # Approximate for 800k dataset
epochs_for_max_iters = self.max_iters / steps_per_epoch
print(f"=== Multiple Passes Training Configuration ===")
print(f"Effective batch size: {effective_batch_size}")
print(f"Steps per epoch: ~{steps_per_epoch}")
print(f"Training for ~{epochs_for_max_iters:.1f} epochs")
print(f"Total training steps: {self.max_iters}")
print(f"Learning rate: {self.learning_rate}")
print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}")
print(f"Max sequence length: {self.max_seq_length}")
print(f"Gradient checkpointing: {self.use_gradient_checkpointing}")
print(f"Warmup steps: {self.warmup_steps}")
print(f"Save interval: {self.save_interval}")
print("=" * 50)
# Set default experiment name if not provided
if self.experiment_name is None:
self.experiment_name = "smollm3_openhermes_fr_multiple_passes"
def get_config(config_path: str) -> SmolLM3ConfigOpenHermesFRMultiplePasses:
"""Load configuration from file or return default"""
if os.path.exists(config_path):
# Load from file if it exists
import importlib.util
spec = importlib.util.spec_from_file_location("config_module", config_path)
config_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config_module)
if hasattr(config_module, 'config'):
return config_module.config
else:
# Try to find a config class
for attr_name in dir(config_module):
attr = getattr(config_module, attr_name)
if isinstance(attr, SmolLM3ConfigOpenHermesFRMultiplePasses):
return attr
# Return default configuration
return SmolLM3ConfigOpenHermesFRMultiplePasses()
# Default configuration instance
config = SmolLM3ConfigOpenHermesFRMultiplePasses()