Spaces:
Running
Running
""" | |
SmolLM3 H100 Lightweight Training Configuration | |
Optimized for rapid training on H100 with 80K Hermes-FR samples | |
""" | |
import os | |
from dataclasses import dataclass | |
from typing import Optional | |
from config.train_smollm3 import SmolLM3Config | |
class SmolLM3ConfigH100Lightweight(SmolLM3Config): | |
"""Configuration for SmolLM3 fine-tuning on OpenHermes-FR dataset - H100 Lightweight""" | |
# Model configuration - optimized for H100 | |
model_name: str = "HuggingFaceTB/SmolLM3-3B" | |
max_seq_length: int = 8192 # Increased for better context understanding | |
use_flash_attention: bool = True | |
use_gradient_checkpointing: bool = True # Enabled for memory efficiency | |
# Training configuration - H100 optimized for rapid training | |
batch_size: int = 16 # Larger batch size for H100 | |
gradient_accumulation_steps: int = 4 # Reduced for faster updates | |
learning_rate: float = 8e-6 # Slightly higher for rapid convergence | |
weight_decay: float = 0.01 | |
warmup_steps: int = 50 # Reduced warmup for rapid training | |
max_iters: int = None # Will be calculated based on epochs | |
eval_interval: int = 50 # More frequent evaluation | |
log_interval: int = 5 # More frequent logging | |
save_interval: int = 200 # More frequent saving | |
# Optimizer configuration - optimized for rapid training | |
optimizer: str = "adamw_torch" | |
beta1: float = 0.9 | |
beta2: float = 0.95 | |
eps: float = 1e-8 | |
# Scheduler configuration - faster learning | |
scheduler: str = "cosine" | |
min_lr: float = 2e-6 # Higher minimum LR | |
# Mixed precision - Using fp16 for better compatibility | |
# Note: bf16 can cause issues on some GPU setups, fp16 is more universally supported | |
fp16: bool = False | |
bf16: bool = True | |
# Logging and saving - more frequent for rapid training | |
save_steps: int = 200 | |
eval_steps: int = 50 | |
logging_steps: int = 5 | |
save_total_limit: Optional[int] = 2 # Keep fewer checkpoints | |
# Evaluation | |
eval_strategy: str = "steps" | |
metric_for_best_model: str = "eval_loss" | |
greater_is_better: bool = False | |
load_best_model_at_end: bool = True | |
# OpenHermes-FR Dataset configuration with sampling | |
dataset_name: str = "legmlai/openhermes-fr" | |
dataset_split: str = "train" | |
input_field: str = "prompt" | |
target_field: str = "completion" | |
filter_bad_entries: bool = False | |
bad_entry_field: str = "bad_entry" | |
sample_size: int = 80000 # 80K samples for lightweight training | |
sample_seed: int = 42 # For reproducibility | |
# Data configuration (not used for HF datasets but kept for compatibility) | |
data_dir: str = "my_dataset" | |
train_file: str = "train.json" | |
validation_file: Optional[str] = "validation.json" | |
test_file: Optional[str] = None | |
# Chat template configuration | |
use_chat_template: bool = True | |
chat_template_kwargs: dict = None | |
# Trackio monitoring configuration | |
enable_tracking: bool = True | |
trackio_url: Optional[str] = None | |
trackio_token: Optional[str] = None | |
log_artifacts: bool = True | |
log_metrics: bool = True | |
log_config: bool = True | |
experiment_name: Optional[str] = None | |
# HF Datasets configuration | |
hf_token: Optional[str] = None | |
dataset_repo: Optional[str] = None | |
# H100-specific optimizations | |
dataloader_num_workers: int = 4 # Optimized for H100 | |
dataloader_pin_memory: bool = True | |
dataloader_prefetch_factor: int = 2 | |
# Memory optimizations for rapid training | |
max_grad_norm: float = 1.0 | |
group_by_length: bool = True # Group similar length sequences | |
# Training duration calculations | |
# With 80k datapoints and effective batch size of 64: | |
# Steps per epoch = 80,000 / 64 = 1,250 steps | |
# For 1 epoch: 1,250 steps | |
# For 2 epochs: 2,500 steps | |
def __post_init__(self): | |
if self.chat_template_kwargs is None: | |
self.chat_template_kwargs = { | |
"enable_thinking": False, | |
"add_generation_prompt": True, | |
"no_think_system_message": True | |
} | |
# Validate configuration | |
if self.fp16 and self.bf16: | |
raise ValueError("Cannot use both fp16 and bf16") | |
if self.max_seq_length > 131072: # 128k limit | |
raise ValueError("max_seq_length cannot exceed 131072") | |
# Calculate training statistics | |
effective_batch_size = self.batch_size * self.gradient_accumulation_steps | |
steps_per_epoch = self.sample_size // effective_batch_size # For 80k dataset | |
epochs_for_max_iters = self.max_iters / steps_per_epoch if self.max_iters else 1 | |
print(f"=== H100 Lightweight Training Configuration ===") | |
print(f"Effective batch size: {effective_batch_size}") | |
print(f"Steps per epoch: ~{steps_per_epoch}") | |
print(f"Training for ~{epochs_for_max_iters:.1f} epochs") | |
print(f"Total training steps: {self.max_iters or 'auto'}") | |
print(f"Learning rate: {self.learning_rate}") | |
print(f"Mixed precision: {'fp16' if self.fp16 else 'bf16'}") | |
print(f"Max sequence length: {self.max_seq_length}") | |
print(f"Gradient checkpointing: {self.use_gradient_checkpointing}") | |
print(f"Dataset sample size: {self.sample_size}") | |
print("=" * 50) | |
# Set default experiment name if not provided | |
if self.experiment_name is None: | |
self.experiment_name = "smollm3_h100_lightweight" | |
def get_config(config_path: str) -> SmolLM3ConfigH100Lightweight: | |
"""Load configuration from file or return default""" | |
if os.path.exists(config_path): | |
# Load from file if it exists | |
import importlib.util | |
spec = importlib.util.spec_from_file_location("config_module", config_path) | |
config_module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(config_module) | |
if hasattr(config_module, 'config'): | |
return config_module.config | |
else: | |
# Try to find a config class | |
for attr_name in dir(config_module): | |
attr = getattr(config_module, attr_name) | |
if isinstance(attr, SmolLM3ConfigH100Lightweight): | |
return attr | |
# Return default configuration | |
return SmolLM3ConfigH100Lightweight() | |
# Default configuration instance | |
config = SmolLM3ConfigH100Lightweight() |