Spaces:
Runtime error
Runtime error
| import argparse | |
| import torch | |
| from llava.constants import ( | |
| IMAGE_TOKEN_INDEX, | |
| DEFAULT_IMAGE_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IM_END_TOKEN, | |
| IMAGE_PLACEHOLDER, | |
| ) | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.model.builder import load_pretrained_model | |
| from llava.utils import disable_torch_init | |
| from llava.mm_utils import ( | |
| process_images, | |
| tokenizer_image_token, | |
| get_model_name_from_path, | |
| KeywordsStoppingCriteria, | |
| ) | |
| from PIL import Image | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| import re | |
| def image_parser(args): | |
| out = args.image_file.split(args.sep) | |
| return out | |
| def load_image(image_file): | |
| if image_file.startswith("http") or image_file.startswith("https"): | |
| response = requests.get(image_file) | |
| image = Image.open(BytesIO(response.content)).convert("RGB") | |
| else: | |
| image = Image.open(image_file).convert("RGB") | |
| return image | |
| def load_images(image_files): | |
| out = [] | |
| for image_file in image_files: | |
| image = load_image(image_file) | |
| out.append(image) | |
| return out | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| args.model_path, args.model_base, model_name | |
| ) | |
| qs = args.query | |
| image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
| if IMAGE_PLACEHOLDER in qs: | |
| if model.config.mm_use_im_start_end: | |
| qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) | |
| else: | |
| qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) | |
| else: | |
| if model.config.mm_use_im_start_end: | |
| qs = image_token_se + "\n" + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| if "llama-2" in model_name.lower(): | |
| conv_mode = "llava_llama_2" | |
| elif "v1" in model_name.lower(): | |
| conv_mode = "llava_v1" | |
| elif "mpt" in model_name.lower(): | |
| conv_mode = "mpt" | |
| else: | |
| conv_mode = "llava_v0" | |
| if args.conv_mode is not None and conv_mode != args.conv_mode: | |
| print( | |
| "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
| conv_mode, args.conv_mode, args.conv_mode | |
| ) | |
| ) | |
| else: | |
| args.conv_mode = conv_mode | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| image_files = image_parser(args) | |
| images = load_images(image_files) | |
| images_tensor = process_images( | |
| images, | |
| image_processor, | |
| model.config | |
| ).to(model.device, dtype=torch.float16) | |
| input_ids = ( | |
| tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| .unsqueeze(0) | |
| .cuda() | |
| ) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=images_tensor, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| max_new_tokens=args.max_new_tokens, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria], | |
| ) | |
| input_token_len = input_ids.shape[1] | |
| n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
| if n_diff_input_output > 0: | |
| print( | |
| f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" | |
| ) | |
| outputs = tokenizer.batch_decode( | |
| output_ids[:, input_token_len:], skip_special_tokens=True | |
| )[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[: -len(stop_str)] | |
| outputs = outputs.strip() | |
| print(outputs) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-file", type=str, required=True) | |
| parser.add_argument("--query", type=str, required=True) | |
| parser.add_argument("--conv-mode", type=str, default=None) | |
| parser.add_argument("--sep", type=str, default=",") | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--max_new_tokens", type=int, default=512) | |
| args = parser.parse_args() | |
| eval_model(args) | |