Spaces:
Running
on
Zero
Running
on
Zero
adds flash attention
Browse files- README.md +14 -12
- app.py +20 -17
- download_model.py +12 -12
- requirements.txt +2 -1
- test_float16_compatibility.py +96 -0
- test_full_model_loading.py +100 -0
- test_pre_quantized_model.py +23 -20
README.md
CHANGED
|
@@ -13,26 +13,26 @@ short_description: Smollm3 for French Understanding
|
|
| 13 |
|
| 14 |
# π€ Petite Elle L'Aime 3 - Chat Interface
|
| 15 |
|
| 16 |
-
A complete Gradio application for the [Petite Elle L'Aime 3](https://huggingface.co/Tonic/petite-elle-L-aime-3-sft) model, featuring the
|
| 17 |
|
| 18 |
## π Features
|
| 19 |
|
| 20 |
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 21 |
-
- **
|
| 22 |
- **Interactive Chat Interface**: Real-time conversation with the model
|
| 23 |
- **Customizable System Prompt**: Define the assistant's personality and behavior
|
| 24 |
- **Thinking Mode**: Enable reasoning mode with thinking tags
|
| 25 |
- **Responsive Design**: Modern UI following the reference layout
|
| 26 |
- **Chat Template Integration**: Proper Jinja template formatting
|
| 27 |
-
- **Automatic Model Download**: Downloads
|
| 28 |
|
| 29 |
## π Model Information
|
| 30 |
|
| 31 |
- **Base Model**: SmolLM3-3B
|
| 32 |
- **Parameters**: ~3B
|
| 33 |
- **Context Length**: 128k
|
| 34 |
-
- **
|
| 35 |
-
- **
|
| 36 |
- **Languages**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 37 |
|
| 38 |
## π οΈ Installation
|
|
@@ -94,8 +94,8 @@ The interface follows the reference layout with:
|
|
| 94 |
### Model Loading Strategy
|
| 95 |
The application uses a smart loading strategy:
|
| 96 |
|
| 97 |
-
1. **Local Check**: First checks if
|
| 98 |
-
2. **Local Loading**: If available, loads from `./
|
| 99 |
3. **Fallback Download**: If not available, downloads from Hugging Face
|
| 100 |
4. **Tokenizer**: Always uses main repo for chat template and configuration
|
| 101 |
|
|
@@ -103,8 +103,8 @@ The application uses a smart loading strategy:
|
|
| 103 |
For Hugging Face Spaces deployment:
|
| 104 |
|
| 105 |
1. **Build Script**: `build.py` runs during Space build
|
| 106 |
-
2. **Model Download**: `download_model.py` downloads
|
| 107 |
-
3. **Local Storage**: Model files stored in `./
|
| 108 |
4. **Fast Loading**: Subsequent runs use local files
|
| 109 |
|
| 110 |
### Chat Template Integration
|
|
@@ -115,9 +115,10 @@ The application uses the custom chat template from the model, which supports:
|
|
| 115 |
- Proper conversation flow management
|
| 116 |
|
| 117 |
### Memory Optimization
|
| 118 |
-
- Uses
|
| 119 |
- Automatic device detection (CUDA/CPU)
|
| 120 |
- Efficient tokenization and generation
|
|
|
|
| 121 |
|
| 122 |
## π Example Usage
|
| 123 |
|
|
@@ -156,8 +157,9 @@ The application uses the custom chat template from the model, which supports:
|
|
| 156 |
- Check the console for detailed error messages
|
| 157 |
|
| 158 |
3. **Performance Issues**:
|
| 159 |
-
- The
|
| 160 |
-
-
|
|
|
|
| 161 |
|
| 162 |
4. **System Prompt Issues**:
|
| 163 |
- Ensure the system prompt is not too long (max 1000 characters)
|
|
|
|
| 13 |
|
| 14 |
# π€ Petite Elle L'Aime 3 - Chat Interface
|
| 15 |
|
| 16 |
+
A complete Gradio application for the [Petite Elle L'Aime 3](https://huggingface.co/Tonic/petite-elle-L-aime-3-sft) model, featuring the full fine-tuned version for maximum performance and quality.
|
| 17 |
|
| 18 |
## π Features
|
| 19 |
|
| 20 |
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 21 |
+
- **Full Fine-Tuned Model**: Maximum performance and quality with full precision
|
| 22 |
- **Interactive Chat Interface**: Real-time conversation with the model
|
| 23 |
- **Customizable System Prompt**: Define the assistant's personality and behavior
|
| 24 |
- **Thinking Mode**: Enable reasoning mode with thinking tags
|
| 25 |
- **Responsive Design**: Modern UI following the reference layout
|
| 26 |
- **Chat Template Integration**: Proper Jinja template formatting
|
| 27 |
+
- **Automatic Model Download**: Downloads full model at build time
|
| 28 |
|
| 29 |
## π Model Information
|
| 30 |
|
| 31 |
- **Base Model**: SmolLM3-3B
|
| 32 |
- **Parameters**: ~3B
|
| 33 |
- **Context Length**: 128k
|
| 34 |
+
- **Precision**: Full fine-tuned model (float16/float32)
|
| 35 |
+
- **Performance**: Maximum quality and accuracy
|
| 36 |
- **Languages**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 37 |
|
| 38 |
## π οΈ Installation
|
|
|
|
| 94 |
### Model Loading Strategy
|
| 95 |
The application uses a smart loading strategy:
|
| 96 |
|
| 97 |
+
1. **Local Check**: First checks if full model files exist locally
|
| 98 |
+
2. **Local Loading**: If available, loads from `./model` folder
|
| 99 |
3. **Fallback Download**: If not available, downloads from Hugging Face
|
| 100 |
4. **Tokenizer**: Always uses main repo for chat template and configuration
|
| 101 |
|
|
|
|
| 103 |
For Hugging Face Spaces deployment:
|
| 104 |
|
| 105 |
1. **Build Script**: `build.py` runs during Space build
|
| 106 |
+
2. **Model Download**: `download_model.py` downloads full model files
|
| 107 |
+
3. **Local Storage**: Model files stored in `./model` directory
|
| 108 |
4. **Fast Loading**: Subsequent runs use local files
|
| 109 |
|
| 110 |
### Chat Template Integration
|
|
|
|
| 115 |
- Proper conversation flow management
|
| 116 |
|
| 117 |
### Memory Optimization
|
| 118 |
+
- Uses full fine-tuned model for maximum quality
|
| 119 |
- Automatic device detection (CUDA/CPU)
|
| 120 |
- Efficient tokenization and generation
|
| 121 |
+
- Float16 precision on GPU for optimal performance
|
| 122 |
|
| 123 |
## π Example Usage
|
| 124 |
|
|
|
|
| 157 |
- Check the console for detailed error messages
|
| 158 |
|
| 159 |
3. **Performance Issues**:
|
| 160 |
+
- The full model provides maximum quality but requires more memory
|
| 161 |
+
- GPU acceleration recommended for optimal performance
|
| 162 |
+
- Consider reducing model parameters if memory is limited
|
| 163 |
|
| 164 |
4. **System Prompt Issues**:
|
| 165 |
- Ensure the system prompt is not too long (max 1000 characters)
|
app.py
CHANGED
|
@@ -11,8 +11,11 @@ import sys
|
|
| 11 |
import requests
|
| 12 |
import accelerate
|
| 13 |
|
| 14 |
-
# Set torch to use
|
| 15 |
-
torch.
|
|
|
|
|
|
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
|
|
@@ -21,11 +24,11 @@ model = None
|
|
| 21 |
tokenizer = None
|
| 22 |
DEFAULT_SYSTEM_PROMPT = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant."
|
| 23 |
title = "# π€ Petite Elle L'Aime 3 - Chat Interface"
|
| 24 |
-
description = "A fine-tuned version of SmolLM3-3B optimized for French conversations. This is the
|
| 25 |
presentation1 = """
|
| 26 |
### π― Features
|
| 27 |
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 28 |
-
- **
|
| 29 |
- **Interactive Chat Interface**: Real-time conversation with the model
|
| 30 |
- **Customizable System Prompt**: Define the assistant's personality and behavior
|
| 31 |
- **Thinking Mode**: Enable reasoning mode with thinking tags
|
|
@@ -33,7 +36,7 @@ presentation1 = """
|
|
| 33 |
"""
|
| 34 |
presentation2 = """### π― FonctionnalitΓ©s
|
| 35 |
* **Support multilingue** : Anglais, FranΓ§ais, Italien, Portugais, Chinois, Arabe
|
| 36 |
-
* **
|
| 37 |
* **Interface de chat interactive** : Conversation en temps réel avec le modèle
|
| 38 |
* **Invite système personnalisable** : Définissez la personnalité et le comportement de l'assistant
|
| 39 |
* **Mode RΓ©flexion** : Activez le mode raisonnement avec des balises de rΓ©flexion
|
|
@@ -97,34 +100,34 @@ def download_chat_template():
|
|
| 97 |
|
| 98 |
|
| 99 |
def load_model():
|
| 100 |
-
"""Load the
|
| 101 |
global model, tokenizer
|
| 102 |
|
| 103 |
try:
|
| 104 |
logger.info(f"Loading tokenizer from {MAIN_MODEL_ID}")
|
| 105 |
-
tokenizer = AutoTokenizer.from_pretrained(MAIN_MODEL_ID
|
| 106 |
chat_template = download_chat_template()
|
| 107 |
if chat_template:
|
| 108 |
tokenizer.chat_template = chat_template
|
| 109 |
logger.info("Chat template downloaded and set successfully")
|
| 110 |
|
| 111 |
-
logger.info(f"Loading
|
| 112 |
|
| 113 |
-
# Load the
|
| 114 |
model_kwargs = {
|
| 115 |
"device_map": "auto" if DEVICE == "cuda" else "cpu",
|
| 116 |
-
"torch_dtype": torch.float32, # Use float32
|
| 117 |
"trust_remote_code": True,
|
| 118 |
"low_cpu_mem_usage": True,
|
| 119 |
}
|
| 120 |
|
| 121 |
logger.info(f"Model loading parameters: {model_kwargs}")
|
| 122 |
-
model = AutoModelForCausalLM.from_pretrained(MAIN_MODEL_ID,
|
| 123 |
|
| 124 |
if tokenizer.pad_token_id is None:
|
| 125 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 126 |
|
| 127 |
-
logger.info("
|
| 128 |
return True
|
| 129 |
|
| 130 |
except Exception as e:
|
|
@@ -173,9 +176,9 @@ def create_prompt(system_message, user_message, enable_thinking=True, tools=None
|
|
| 173 |
logger.error(f"Error creating prompt: {e}")
|
| 174 |
return ""
|
| 175 |
|
| 176 |
-
@spaces.GPU(
|
| 177 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p, repetition_penalty, do_sample, enable_thinking=True, tools=None, use_xml_tools=True):
|
| 178 |
-
"""Generate response using the
|
| 179 |
global model, tokenizer
|
| 180 |
|
| 181 |
if model is None or tokenizer is None:
|
|
@@ -212,7 +215,7 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
| 212 |
attention_mask=inputs['attention_mask'],
|
| 213 |
pad_token_id=tokenizer.eos_token_id,
|
| 214 |
eos_token_id=tokenizer.eos_token_id,
|
| 215 |
-
cache_implementation="static"
|
| 216 |
)
|
| 217 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 218 |
assistant_response = response[len(full_prompt):].strip()
|
|
@@ -261,7 +264,7 @@ def bot(history, system_prompt, max_length, temperature, top_p, repetition_penal
|
|
| 261 |
return history
|
| 262 |
|
| 263 |
# Load model on startup
|
| 264 |
-
logger.info("Starting model loading process with
|
| 265 |
load_model()
|
| 266 |
|
| 267 |
# Create Gradio interface
|
|
@@ -321,7 +324,7 @@ with gr.Blocks() as demo:
|
|
| 321 |
step=0.01
|
| 322 |
)
|
| 323 |
repetition_penalty = gr.Slider(
|
| 324 |
-
label="π RΓ©pΓ©tition
|
| 325 |
minimum=1.0,
|
| 326 |
maximum=2.0,
|
| 327 |
value=1.1,
|
|
|
|
| 11 |
import requests
|
| 12 |
import accelerate
|
| 13 |
|
| 14 |
+
# Set torch to use float16 on GPU for better performance, float32 on CPU for compatibility
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
torch.set_default_dtype(torch.float16)
|
| 17 |
+
else:
|
| 18 |
+
torch.set_default_dtype(torch.float32)
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
|
|
|
|
| 24 |
tokenizer = None
|
| 25 |
DEFAULT_SYSTEM_PROMPT = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant."
|
| 26 |
title = "# π€ Petite Elle L'Aime 3 - Chat Interface"
|
| 27 |
+
description = "A fine-tuned version of SmolLM3-3B optimized for French conversations. This is the full fine-tuned model for maximum performance and quality."
|
| 28 |
presentation1 = """
|
| 29 |
### π― Features
|
| 30 |
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
|
| 31 |
+
- **Full Fine-Tuned Model**: Maximum performance and quality with full precision
|
| 32 |
- **Interactive Chat Interface**: Real-time conversation with the model
|
| 33 |
- **Customizable System Prompt**: Define the assistant's personality and behavior
|
| 34 |
- **Thinking Mode**: Enable reasoning mode with thinking tags
|
|
|
|
| 36 |
"""
|
| 37 |
presentation2 = """### π― FonctionnalitΓ©s
|
| 38 |
* **Support multilingue** : Anglais, FranΓ§ais, Italien, Portugais, Chinois, Arabe
|
| 39 |
+
* **Modèle complet fine-tuné** : Performance et qualité maximales avec précision complète
|
| 40 |
* **Interface de chat interactive** : Conversation en temps réel avec le modèle
|
| 41 |
* **Invite système personnalisable** : Définissez la personnalité et le comportement de l'assistant
|
| 42 |
* **Mode RΓ©flexion** : Activez le mode raisonnement avec des balises de rΓ©flexion
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
def load_model():
|
| 103 |
+
"""Load the full fine-tuned model and tokenizer"""
|
| 104 |
global model, tokenizer
|
| 105 |
|
| 106 |
try:
|
| 107 |
logger.info(f"Loading tokenizer from {MAIN_MODEL_ID}")
|
| 108 |
+
tokenizer = AutoTokenizer.from_pretrained(MAIN_MODEL_ID)
|
| 109 |
chat_template = download_chat_template()
|
| 110 |
if chat_template:
|
| 111 |
tokenizer.chat_template = chat_template
|
| 112 |
logger.info("Chat template downloaded and set successfully")
|
| 113 |
|
| 114 |
+
logger.info(f"Loading full fine-tuned model from {MAIN_MODEL_ID}")
|
| 115 |
|
| 116 |
+
# Load the full fine-tuned model with optimized settings
|
| 117 |
model_kwargs = {
|
| 118 |
"device_map": "auto" if DEVICE == "cuda" else "cpu",
|
| 119 |
+
"torch_dtype": torch.float16 if DEVICE == "cuda" else torch.float32, # Use float16 on GPU, float32 on CPU
|
| 120 |
"trust_remote_code": True,
|
| 121 |
"low_cpu_mem_usage": True,
|
| 122 |
}
|
| 123 |
|
| 124 |
logger.info(f"Model loading parameters: {model_kwargs}")
|
| 125 |
+
model = AutoModelForCausalLM.from_pretrained(MAIN_MODEL_ID, **model_kwargs)
|
| 126 |
|
| 127 |
if tokenizer.pad_token_id is None:
|
| 128 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 129 |
|
| 130 |
+
logger.info("Full fine-tuned model loaded successfully")
|
| 131 |
return True
|
| 132 |
|
| 133 |
except Exception as e:
|
|
|
|
| 176 |
logger.error(f"Error creating prompt: {e}")
|
| 177 |
return ""
|
| 178 |
|
| 179 |
+
@spaces.GPU()
|
| 180 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p, repetition_penalty, do_sample, enable_thinking=True, tools=None, use_xml_tools=True):
|
| 181 |
+
"""Generate response using the full fine-tuned model with SmolLM3 features"""
|
| 182 |
global model, tokenizer
|
| 183 |
|
| 184 |
if model is None or tokenizer is None:
|
|
|
|
| 215 |
attention_mask=inputs['attention_mask'],
|
| 216 |
pad_token_id=tokenizer.eos_token_id,
|
| 217 |
eos_token_id=tokenizer.eos_token_id,
|
| 218 |
+
cache_implementation="static"
|
| 219 |
)
|
| 220 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 221 |
assistant_response = response[len(full_prompt):].strip()
|
|
|
|
| 264 |
return history
|
| 265 |
|
| 266 |
# Load model on startup
|
| 267 |
+
logger.info("Starting model loading process with full fine-tuned model...")
|
| 268 |
load_model()
|
| 269 |
|
| 270 |
# Create Gradio interface
|
|
|
|
| 324 |
step=0.01
|
| 325 |
)
|
| 326 |
repetition_penalty = gr.Slider(
|
| 327 |
+
label="π PΓ©nalitΓ© de RΓ©pΓ©tition",
|
| 328 |
minimum=1.0,
|
| 329 |
maximum=2.0,
|
| 330 |
value=1.1,
|
download_model.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Helper script to download the
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -15,12 +15,12 @@ logger = logging.getLogger(__name__)
|
|
| 15 |
|
| 16 |
# Model configuration
|
| 17 |
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
-
LOCAL_MODEL_PATH = "./
|
| 19 |
|
| 20 |
def download_model():
|
| 21 |
-
"""Download the
|
| 22 |
try:
|
| 23 |
-
logger.info(f"Downloading
|
| 24 |
|
| 25 |
# Create local directory if it doesn't exist
|
| 26 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
|
@@ -31,9 +31,9 @@ def download_model():
|
|
| 31 |
# List all files in the repository
|
| 32 |
all_files = list_repo_files(MAIN_MODEL_ID)
|
| 33 |
|
| 34 |
-
# Filter files that are in the
|
| 35 |
-
|
| 36 |
-
logger.info(f"Found {len(
|
| 37 |
|
| 38 |
# Download each required file
|
| 39 |
required_files = [
|
|
@@ -42,24 +42,24 @@ def download_model():
|
|
| 42 |
"tokenizer.json",
|
| 43 |
"tokenizer_config.json",
|
| 44 |
"special_tokens_map.json",
|
| 45 |
-
"generation_config.json"
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
downloaded_count = 0
|
| 49 |
for file_name in required_files:
|
| 50 |
-
|
| 51 |
-
if int4_file_path in all_files:
|
| 52 |
logger.info(f"Downloading {file_name}...")
|
| 53 |
hf_hub_download(
|
| 54 |
repo_id=MAIN_MODEL_ID,
|
| 55 |
-
filename=
|
| 56 |
local_dir=LOCAL_MODEL_PATH,
|
| 57 |
local_dir_use_symlinks=False
|
| 58 |
)
|
| 59 |
logger.info(f"Downloaded {file_name}")
|
| 60 |
downloaded_count += 1
|
| 61 |
else:
|
| 62 |
-
logger.warning(f"File {file_name} not found in
|
| 63 |
|
| 64 |
logger.info(f"Downloaded {downloaded_count} out of {len(required_files)} required files")
|
| 65 |
logger.info(f"Model downloaded successfully to {LOCAL_MODEL_PATH}")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Helper script to download the full fine-tuned model files at build time for Hugging Face Spaces
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
|
|
| 15 |
|
| 16 |
# Model configuration
|
| 17 |
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
+
LOCAL_MODEL_PATH = "./model"
|
| 19 |
|
| 20 |
def download_model():
|
| 21 |
+
"""Download the full fine-tuned model files to local directory"""
|
| 22 |
try:
|
| 23 |
+
logger.info(f"Downloading full fine-tuned model from {MAIN_MODEL_ID}")
|
| 24 |
|
| 25 |
# Create local directory if it doesn't exist
|
| 26 |
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
|
|
|
|
| 31 |
# List all files in the repository
|
| 32 |
all_files = list_repo_files(MAIN_MODEL_ID)
|
| 33 |
|
| 34 |
+
# Filter files that are in the main repository (not in subfolders)
|
| 35 |
+
main_files = [f for f in all_files if not "/" in f or f.startswith("int4/") == False]
|
| 36 |
+
logger.info(f"Found {len(main_files)} files in main repository")
|
| 37 |
|
| 38 |
# Download each required file
|
| 39 |
required_files = [
|
|
|
|
| 42 |
"tokenizer.json",
|
| 43 |
"tokenizer_config.json",
|
| 44 |
"special_tokens_map.json",
|
| 45 |
+
"generation_config.json",
|
| 46 |
+
"chat_template.jinja"
|
| 47 |
]
|
| 48 |
|
| 49 |
downloaded_count = 0
|
| 50 |
for file_name in required_files:
|
| 51 |
+
if file_name in all_files:
|
|
|
|
| 52 |
logger.info(f"Downloading {file_name}...")
|
| 53 |
hf_hub_download(
|
| 54 |
repo_id=MAIN_MODEL_ID,
|
| 55 |
+
filename=file_name,
|
| 56 |
local_dir=LOCAL_MODEL_PATH,
|
| 57 |
local_dir_use_symlinks=False
|
| 58 |
)
|
| 59 |
logger.info(f"Downloaded {file_name}")
|
| 60 |
downloaded_count += 1
|
| 61 |
else:
|
| 62 |
+
logger.warning(f"File {file_name} not found in main repository")
|
| 63 |
|
| 64 |
logger.info(f"Downloaded {downloaded_count} out of {len(required_files)} required files")
|
| 65 |
logger.info(f"Model downloaded successfully to {LOCAL_MODEL_PATH}")
|
requirements.txt
CHANGED
|
@@ -8,4 +8,5 @@ tokenizers>=0.21.2
|
|
| 8 |
pyyaml>=6.0
|
| 9 |
psutil>=5.9.0
|
| 10 |
tqdm>=4.64.0
|
| 11 |
-
requests>=2.31.0
|
|
|
|
|
|
| 8 |
pyyaml>=6.0
|
| 9 |
psutil>=5.9.0
|
| 10 |
tqdm>=4.64.0
|
| 11 |
+
requests>=2.31.0
|
| 12 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.9.post1/flash_attn-2.5.9.post1+cu118torch1.12cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
test_float16_compatibility.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Test script for float16 compatibility with pre-quantized model
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
# Set up logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
def test_float16_compatibility():
|
| 15 |
+
"""Test float16 compatibility with pre-quantized model"""
|
| 16 |
+
|
| 17 |
+
model_id = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
logger.info(f"Testing float16 compatibility on device: {device}")
|
| 21 |
+
|
| 22 |
+
# Test both float32 and float16
|
| 23 |
+
dtypes_to_test = []
|
| 24 |
+
|
| 25 |
+
if device == "cuda":
|
| 26 |
+
dtypes_to_test = [torch.float32, torch.float16]
|
| 27 |
+
else:
|
| 28 |
+
dtypes_to_test = [torch.float32] # Only test float32 on CPU
|
| 29 |
+
|
| 30 |
+
for dtype in dtypes_to_test:
|
| 31 |
+
logger.info(f"\nTesting with dtype: {dtype}")
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
# Load tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 36 |
+
if tokenizer.pad_token_id is None:
|
| 37 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 38 |
+
|
| 39 |
+
# Load model with specific dtype
|
| 40 |
+
model_kwargs = {
|
| 41 |
+
"device_map": "auto" if device == "cuda" else "cpu",
|
| 42 |
+
"torch_dtype": dtype,
|
| 43 |
+
"trust_remote_code": True,
|
| 44 |
+
"low_cpu_mem_usage": True,
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
logger.info(f"Loading model with {dtype}...")
|
| 48 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
| 49 |
+
|
| 50 |
+
# Test generation
|
| 51 |
+
test_prompt = "Bonjour, comment allez-vous?"
|
| 52 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 53 |
+
|
| 54 |
+
if device == "cuda":
|
| 55 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 56 |
+
|
| 57 |
+
logger.info("Generating response...")
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
output_ids = model.generate(
|
| 60 |
+
inputs['input_ids'],
|
| 61 |
+
max_new_tokens=50,
|
| 62 |
+
temperature=0.7,
|
| 63 |
+
top_p=0.95,
|
| 64 |
+
do_sample=True,
|
| 65 |
+
attention_mask=inputs['attention_mask'],
|
| 66 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 67 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 68 |
+
cache_implementation="static"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 72 |
+
assistant_response = response[len(test_prompt):].strip()
|
| 73 |
+
|
| 74 |
+
logger.info(f"β
{dtype} test successful!")
|
| 75 |
+
logger.info(f"Input: {test_prompt}")
|
| 76 |
+
logger.info(f"Output: {assistant_response}")
|
| 77 |
+
|
| 78 |
+
# Check memory usage
|
| 79 |
+
if device == "cuda":
|
| 80 |
+
memory_used = torch.cuda.memory_allocated() / 1024**3
|
| 81 |
+
logger.info(f"GPU Memory used: {memory_used:.2f} GB")
|
| 82 |
+
|
| 83 |
+
# Check model dtype
|
| 84 |
+
logger.info(f"Model dtype: {model.dtype}")
|
| 85 |
+
|
| 86 |
+
# Clean up
|
| 87 |
+
del model
|
| 88 |
+
torch.cuda.empty_cache() if device == "cuda" else None
|
| 89 |
+
|
| 90 |
+
except Exception as e:
|
| 91 |
+
logger.error(f"β {dtype} test failed: {e}")
|
| 92 |
+
import traceback
|
| 93 |
+
traceback.print_exc()
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
test_float16_compatibility()
|
test_full_model_loading.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Test script for full fine-tuned model loading and inference
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
# Set up logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
def test_full_model_loading():
|
| 15 |
+
"""Test the full fine-tuned model loading and generation"""
|
| 16 |
+
|
| 17 |
+
model_id = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
logger.info(f"Testing full fine-tuned model on device: {device}")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
# Load tokenizer
|
| 24 |
+
logger.info("Loading tokenizer...")
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 26 |
+
if tokenizer.pad_token_id is None:
|
| 27 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 28 |
+
|
| 29 |
+
# Load full fine-tuned model
|
| 30 |
+
logger.info("Loading full fine-tuned model...")
|
| 31 |
+
model_kwargs = {
|
| 32 |
+
"device_map": "auto" if device == "cuda" else "cpu",
|
| 33 |
+
"torch_dtype": torch.float16 if device == "cuda" else torch.float32,
|
| 34 |
+
"trust_remote_code": True,
|
| 35 |
+
"low_cpu_mem_usage": True,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
| 39 |
+
|
| 40 |
+
# Test generation
|
| 41 |
+
test_prompt = "Bonjour, comment allez-vous?"
|
| 42 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 43 |
+
|
| 44 |
+
if device == "cuda":
|
| 45 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 46 |
+
|
| 47 |
+
logger.info("Generating response...")
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
output_ids = model.generate(
|
| 50 |
+
inputs['input_ids'],
|
| 51 |
+
max_new_tokens=50,
|
| 52 |
+
temperature=0.7,
|
| 53 |
+
top_p=0.95,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
attention_mask=inputs['attention_mask'],
|
| 56 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 57 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 61 |
+
assistant_response = response[len(test_prompt):].strip()
|
| 62 |
+
|
| 63 |
+
logger.info("β
Full fine-tuned model test successful!")
|
| 64 |
+
logger.info(f"Input: {test_prompt}")
|
| 65 |
+
logger.info(f"Output: {assistant_response}")
|
| 66 |
+
|
| 67 |
+
# Check model precision status
|
| 68 |
+
logger.info("Checking model precision status...")
|
| 69 |
+
float16_layers = 0
|
| 70 |
+
float32_layers = 0
|
| 71 |
+
total_layers = 0
|
| 72 |
+
for name, module in model.named_modules():
|
| 73 |
+
if hasattr(module, 'weight'):
|
| 74 |
+
total_layers += 1
|
| 75 |
+
if module.weight.dtype == torch.float16:
|
| 76 |
+
float16_layers += 1
|
| 77 |
+
elif module.weight.dtype == torch.float32:
|
| 78 |
+
float32_layers += 1
|
| 79 |
+
|
| 80 |
+
logger.info(f"Float16 layers: {float16_layers}/{total_layers}")
|
| 81 |
+
logger.info(f"Float32 layers: {float32_layers}/{total_layers}")
|
| 82 |
+
|
| 83 |
+
# Clean up
|
| 84 |
+
del model
|
| 85 |
+
torch.cuda.empty_cache() if device == "cuda" else None
|
| 86 |
+
|
| 87 |
+
return True
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
logger.error(f"β Full fine-tuned model test failed: {e}")
|
| 91 |
+
import traceback
|
| 92 |
+
traceback.print_exc()
|
| 93 |
+
return False
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
success = test_full_model_loading()
|
| 97 |
+
if success:
|
| 98 |
+
print("β
Full model loading test passed!")
|
| 99 |
+
else:
|
| 100 |
+
print("β Full model loading test failed!")
|
test_pre_quantized_model.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Test script for
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
@@ -11,31 +11,31 @@ import logging
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
"""Test the
|
| 16 |
|
| 17 |
model_id = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
-
logger.info(f"Testing
|
| 21 |
|
| 22 |
try:
|
| 23 |
# Load tokenizer
|
| 24 |
logger.info("Loading tokenizer...")
|
| 25 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
| 26 |
if tokenizer.pad_token_id is None:
|
| 27 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 28 |
|
| 29 |
-
# Load
|
| 30 |
-
logger.info("Loading
|
| 31 |
model_kwargs = {
|
| 32 |
"device_map": "auto" if device == "cuda" else "cpu",
|
| 33 |
-
"torch_dtype": torch.float32,
|
| 34 |
"trust_remote_code": True,
|
| 35 |
"low_cpu_mem_usage": True,
|
| 36 |
}
|
| 37 |
|
| 38 |
-
model = AutoModelForCausalLM.from_pretrained(model_id,
|
| 39 |
|
| 40 |
# Test generation
|
| 41 |
test_prompt = "Bonjour, comment allez-vous?"
|
|
@@ -55,37 +55,40 @@ def test_pre_quantized_model():
|
|
| 55 |
attention_mask=inputs['attention_mask'],
|
| 56 |
pad_token_id=tokenizer.eos_token_id,
|
| 57 |
eos_token_id=tokenizer.eos_token_id,
|
| 58 |
-
cache_implementation="static" # Important for quantized models
|
| 59 |
)
|
| 60 |
|
| 61 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 62 |
assistant_response = response[len(test_prompt):].strip()
|
| 63 |
|
| 64 |
-
logger.info("β
|
| 65 |
logger.info(f"Input: {test_prompt}")
|
| 66 |
logger.info(f"Output: {assistant_response}")
|
| 67 |
|
| 68 |
-
# Check model
|
| 69 |
-
logger.info("Checking model
|
| 70 |
-
|
|
|
|
| 71 |
total_layers = 0
|
| 72 |
for name, module in model.named_modules():
|
| 73 |
if hasattr(module, 'weight'):
|
| 74 |
total_layers += 1
|
| 75 |
-
if module.weight.dtype
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
logger.info(f"
|
|
|
|
| 80 |
|
| 81 |
# Clean up
|
| 82 |
del model
|
| 83 |
torch.cuda.empty_cache() if device == "cuda" else None
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
-
logger.error(f"β
|
| 87 |
import traceback
|
| 88 |
traceback.print_exc()
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
-
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Test script for full fine-tuned model inference
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
+
def test_full_fine_tuned_model():
|
| 15 |
+
"""Test the full fine-tuned model loading and generation"""
|
| 16 |
|
| 17 |
model_id = "Tonic/petite-elle-L-aime-3-sft"
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
+
logger.info(f"Testing full fine-tuned model on device: {device}")
|
| 21 |
|
| 22 |
try:
|
| 23 |
# Load tokenizer
|
| 24 |
logger.info("Loading tokenizer...")
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 26 |
if tokenizer.pad_token_id is None:
|
| 27 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 28 |
|
| 29 |
+
# Load full fine-tuned model
|
| 30 |
+
logger.info("Loading full fine-tuned model...")
|
| 31 |
model_kwargs = {
|
| 32 |
"device_map": "auto" if device == "cuda" else "cpu",
|
| 33 |
+
"torch_dtype": torch.float16 if device == "cuda" else torch.float32,
|
| 34 |
"trust_remote_code": True,
|
| 35 |
"low_cpu_mem_usage": True,
|
| 36 |
}
|
| 37 |
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
| 39 |
|
| 40 |
# Test generation
|
| 41 |
test_prompt = "Bonjour, comment allez-vous?"
|
|
|
|
| 55 |
attention_mask=inputs['attention_mask'],
|
| 56 |
pad_token_id=tokenizer.eos_token_id,
|
| 57 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 61 |
assistant_response = response[len(test_prompt):].strip()
|
| 62 |
|
| 63 |
+
logger.info("β
Full fine-tuned model test successful!")
|
| 64 |
logger.info(f"Input: {test_prompt}")
|
| 65 |
logger.info(f"Output: {assistant_response}")
|
| 66 |
|
| 67 |
+
# Check model precision status
|
| 68 |
+
logger.info("Checking model precision status...")
|
| 69 |
+
float16_layers = 0
|
| 70 |
+
float32_layers = 0
|
| 71 |
total_layers = 0
|
| 72 |
for name, module in model.named_modules():
|
| 73 |
if hasattr(module, 'weight'):
|
| 74 |
total_layers += 1
|
| 75 |
+
if module.weight.dtype == torch.float16:
|
| 76 |
+
float16_layers += 1
|
| 77 |
+
elif module.weight.dtype == torch.float32:
|
| 78 |
+
float32_layers += 1
|
| 79 |
+
logger.info(f"Float32 layer: {name} - {module.weight.dtype}")
|
| 80 |
|
| 81 |
+
logger.info(f"Float16 layers: {float16_layers}/{total_layers}")
|
| 82 |
+
logger.info(f"Float32 layers: {float32_layers}/{total_layers}")
|
| 83 |
|
| 84 |
# Clean up
|
| 85 |
del model
|
| 86 |
torch.cuda.empty_cache() if device == "cuda" else None
|
| 87 |
|
| 88 |
except Exception as e:
|
| 89 |
+
logger.error(f"β Full fine-tuned model test failed: {e}")
|
| 90 |
import traceback
|
| 91 |
traceback.print_exc()
|
| 92 |
|
| 93 |
if __name__ == "__main__":
|
| 94 |
+
test_full_fine_tuned_model()
|