Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import torch | |
# Create the ChatBot class | |
class ChatBot: | |
def __init__(self): | |
# Initialize the history | |
self.history = [] | |
# Initialize the tokenizer with SentencePiece support | |
self.tokenizer = AutoTokenizer.from_pretrained("Open-Orca/Mistral-7B-OpenOrca", use_fast=True) | |
# Initialize the model | |
self.model = AutoModelForCausalLM.from_pretrained("Open-Orca/Mistral-7B-OpenOrca") | |
def predict(self, input): | |
# Encode user input | |
new_user_input_ids = self.tokenizer.encode(input + self.tokenizer.eos_token, return_tensors="pt") | |
# Flatten the conversation history | |
flat_history = [item for sublist in self.history for item in sublist] | |
flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0) | |
# Create the input tensor for the model | |
bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids | |
# Generate a response from the model | |
chat_history_ids = self.model.generate(bot_input_ids, max_length=2000, pad_token_id=self.tokenizer.eos_token_id) | |
# Update the history with the generated response | |
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0]) | |
# Decode the response | |
response = self.tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
return response | |
# Example usage | |
chatbot = ChatBot() | |
user_input = "Hello, chatbot!" | |
response = chatbot.predict(user_input) | |
print(response) | |
title = "👋🏻Welcome to Tonic's EZ Chat🚀" | |
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together." | |
examples = [["How are you?"]] | |
iface = gr.Interface( | |
fn=bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs="text", | |
outputs="text", | |
theme="ParityError/Anime" | |
) | |
iface.launch() | |