Create app.py
Browse filesinitial commit
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "Salesforce/xLAM-7b-r"
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Set random seed for reproducibility
|
13 |
+
torch.random.manual_seed(0)
|
14 |
+
|
15 |
+
# Task and format instructions
|
16 |
+
task_instruction = """
|
17 |
+
Based on the previous context and API request history, generate an API request or a response as an AI assistant.""".strip()
|
18 |
+
|
19 |
+
format_instruction = """
|
20 |
+
The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make
|
21 |
+
tool_calls an empty list "[]".
|
22 |
+
```
|
23 |
+
{"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}
|
24 |
+
```
|
25 |
+
""".strip()
|
26 |
+
|
27 |
+
def convert_to_xlam_tool(tools):
|
28 |
+
if isinstance(tools, dict):
|
29 |
+
return {
|
30 |
+
"name": tools["name"],
|
31 |
+
"description": tools["description"],
|
32 |
+
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
|
33 |
+
}
|
34 |
+
elif isinstance(tools, list):
|
35 |
+
return [convert_to_xlam_tool(tool) for tool in tools]
|
36 |
+
else:
|
37 |
+
return tools
|
38 |
+
|
39 |
+
def build_conversation_history_prompt(conversation_history: str):
|
40 |
+
parsed_history = []
|
41 |
+
for step_data in conversation_history:
|
42 |
+
parsed_history.append({
|
43 |
+
"step_id": step_data["step_id"],
|
44 |
+
"thought": step_data["thought"],
|
45 |
+
"tool_calls": step_data["tool_calls"],
|
46 |
+
"next_observation": step_data["next_observation"],
|
47 |
+
"user_input": step_data['user_input']
|
48 |
+
})
|
49 |
+
|
50 |
+
history_string = json.dumps(parsed_history)
|
51 |
+
return f"\n[BEGIN OF HISTORY STEPS]\n{history_string}\n[END OF HISTORY STEPS]\n"
|
52 |
+
|
53 |
+
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
|
54 |
+
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
|
55 |
+
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n"
|
56 |
+
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
|
57 |
+
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
|
58 |
+
|
59 |
+
if len(conversation_history) > 0:
|
60 |
+
prompt += build_conversation_history_prompt(conversation_history)
|
61 |
+
return prompt
|
62 |
+
|
63 |
+
def generate_response(tools_input, query):
|
64 |
+
try:
|
65 |
+
tools = json.loads(tools_input)
|
66 |
+
except json.JSONDecodeError:
|
67 |
+
return "Error: Invalid JSON format for tools input."
|
68 |
+
|
69 |
+
xlam_format_tools = convert_to_xlam_tool(tools)
|
70 |
+
conversation_history = []
|
71 |
+
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)
|
72 |
+
|
73 |
+
messages = [
|
74 |
+
{'role': 'user', 'content': content}
|
75 |
+
]
|
76 |
+
|
77 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
78 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
79 |
+
agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
80 |
+
|
81 |
+
return agent_action
|
82 |
+
|
83 |
+
# Gradio interface
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=generate_response,
|
86 |
+
inputs=[
|
87 |
+
gr.Textbox(
|
88 |
+
label="Available Tools (JSON format)",
|
89 |
+
lines=10,
|
90 |
+
value=json.dumps([
|
91 |
+
{
|
92 |
+
"name": "get_weather",
|
93 |
+
"description": "Get the current weather for a location",
|
94 |
+
"parameters": {
|
95 |
+
"type": "object",
|
96 |
+
"properties": {
|
97 |
+
"location": {
|
98 |
+
"type": "string",
|
99 |
+
"description": "The city and state, e.g. San Francisco, New York"
|
100 |
+
},
|
101 |
+
"unit": {
|
102 |
+
"type": "string",
|
103 |
+
"enum": ["celsius", "fahrenheit"],
|
104 |
+
"description": "The unit of temperature to return"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"required": ["location"]
|
108 |
+
}
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"name": "search",
|
112 |
+
"description": "Search for information on the internet",
|
113 |
+
"parameters": {
|
114 |
+
"type": "object",
|
115 |
+
"properties": {
|
116 |
+
"query": {
|
117 |
+
"type": "string",
|
118 |
+
"description": "The search query, e.g. 'latest news on AI'"
|
119 |
+
}
|
120 |
+
},
|
121 |
+
"required": ["query"]
|
122 |
+
}
|
123 |
+
}
|
124 |
+
], indent=2)
|
125 |
+
),
|
126 |
+
gr.Textbox(label="User Query", lines=2, value="What's the weather like in New York in fahrenheit?")
|
127 |
+
],
|
128 |
+
outputs=gr.Textbox(label="Generated Response", lines=10),
|
129 |
+
title="xLAM-7b-r API Request Generator",
|
130 |
+
description="Enter available tools in JSON format and a user query to generate an API request or response.",
|
131 |
+
)
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
iface.launch()
|