Spaces:
Sleeping
Sleeping
Pclanglais
commited on
Commit
•
ffbf266
1
Parent(s):
2814dfb
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,36 @@
|
|
1 |
import spaces
|
2 |
import transformers
|
3 |
import re
|
|
|
|
|
4 |
import torch
|
5 |
import gradio as gr
|
|
|
6 |
import os
|
7 |
-
import ctranslate2
|
8 |
-
import difflib
|
9 |
import shutil
|
10 |
import requests
|
|
|
|
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
|
13 |
# Define the device
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# CSS for formatting (unchanged)
|
22 |
# CSS for formatting
|
23 |
css = """
|
24 |
<style>
|
@@ -117,41 +129,73 @@ def preprocess_text(text):
|
|
117 |
return text.strip()
|
118 |
|
119 |
def split_text(text, max_tokens=500):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
# OCR Correction Class
|
157 |
class OCRCorrector:
|
@@ -170,7 +214,7 @@ class TextProcessor:
|
|
170 |
|
171 |
@spaces.GPU(duration=120)
|
172 |
def process(self, user_message):
|
173 |
-
#
|
174 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
175 |
|
176 |
# Combine results
|
|
|
1 |
import spaces
|
2 |
import transformers
|
3 |
import re
|
4 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
|
5 |
+
from vllm import LLM, SamplingParams
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
+
import json
|
9 |
import os
|
|
|
|
|
10 |
import shutil
|
11 |
import requests
|
12 |
+
import pandas as pd
|
13 |
+
import difflib
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
|
16 |
# Define the device
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
+
# OCR Correction Model
|
20 |
+
ocr_model_name = "PleIAs/OCRonos-Vintage"
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
24 |
+
|
25 |
+
# Load pre-trained model and tokenizer
|
26 |
+
model_name = "PleIAs/OCRonos-Vintage"
|
27 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
28 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
29 |
+
|
30 |
+
# Set the device to GPU if available, otherwise use CPU
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
model.to(device)
|
33 |
|
|
|
34 |
# CSS for formatting
|
35 |
css = """
|
36 |
<style>
|
|
|
129 |
return text.strip()
|
130 |
|
131 |
def split_text(text, max_tokens=500):
|
132 |
+
parts = text.split("\n")
|
133 |
+
chunks = []
|
134 |
+
current_chunk = ""
|
135 |
+
|
136 |
+
for part in parts:
|
137 |
+
if current_chunk:
|
138 |
+
temp_chunk = current_chunk + "\n" + part
|
139 |
+
else:
|
140 |
+
temp_chunk = part
|
141 |
+
|
142 |
+
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
143 |
+
|
144 |
+
if num_tokens <= max_tokens:
|
145 |
+
current_chunk = temp_chunk
|
146 |
+
else:
|
147 |
+
if current_chunk:
|
148 |
+
chunks.append(current_chunk)
|
149 |
+
current_chunk = part
|
150 |
+
|
151 |
+
if current_chunk:
|
152 |
+
chunks.append(current_chunk)
|
153 |
+
|
154 |
+
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
155 |
+
long_text = chunks[0]
|
156 |
+
chunks = []
|
157 |
+
while len(tokenizer.tokenize(long_text)) > max_tokens:
|
158 |
+
split_point = len(long_text) // 2
|
159 |
+
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
160 |
+
split_point += 1
|
161 |
+
if split_point >= len(long_text):
|
162 |
+
split_point = len(long_text) - 1
|
163 |
+
chunks.append(long_text[:split_point].strip())
|
164 |
+
long_text = long_text[split_point:].strip()
|
165 |
+
if long_text:
|
166 |
+
chunks.append(long_text)
|
167 |
+
|
168 |
+
return chunks
|
169 |
+
|
170 |
+
|
171 |
+
# Function to generate text
|
172 |
+
def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
173 |
+
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
|
174 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
175 |
+
|
176 |
+
# Set the number of threads for PyTorch
|
177 |
+
torch.set_num_threads(num_threads)
|
178 |
+
|
179 |
+
# Generate text
|
180 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
181 |
+
future = executor.submit(
|
182 |
+
model.generate,
|
183 |
+
input_ids,
|
184 |
+
max_new_tokens=max_new_tokens,
|
185 |
+
pad_token_id=tokenizer.eos_token_id,
|
186 |
+
top_k=50,
|
187 |
+
num_return_sequences=1,
|
188 |
+
do_sample=True,
|
189 |
+
temperature=0.7
|
190 |
+
)
|
191 |
+
output = future.result()
|
192 |
+
|
193 |
+
# Decode and return the generated text
|
194 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
195 |
+
print(result)
|
196 |
+
|
197 |
+
result = result.split("### Correction ###")[1]
|
198 |
+
return result
|
199 |
|
200 |
# OCR Correction Class
|
201 |
class OCRCorrector:
|
|
|
214 |
|
215 |
@spaces.GPU(duration=120)
|
216 |
def process(self, user_message):
|
217 |
+
#OCR Correction
|
218 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
219 |
|
220 |
# Combine results
|